结合稀疏贝叶斯学习和压缩感知CS理论, 提出了一种基于贝叶斯匹配追踪的SAR图像重构的新方法。该方法将SAR图像的重构过程看做是一个线性回归问题, 而待重建的图像是该回归模型中的未知权值参数。利用高斯混合参数对未知权值参数赋予确定的先验条件概率分布, 用于限制权值参数的稀疏性。该方法能够得到重建图像所需要的一组具有较高后验概率密度的模型, 从而实现图像在最小均方误差MMSE意义下的重构; 对于高斯混合模型中参数未知的情况, 可以采用基于EM的最大似然估计方法估计。实验结果表明, 基于贝叶斯匹配追踪的SAR图像重构方法能够获得精确的重建图像, 并且能够有效地保持图像的细节特征。
2021-10-15 10:13:42 1.19MB 压缩感知 SAR图像 高斯混合参数 贝叶斯
1
学习信号检测与估计理论的第一选择 MIT经典教材
2021-10-14 19:56:39 9.06MB 检测 估计 信号
1
高斯模糊 shader
2021-10-14 18:06:20 3KB unity 插件 高斯模糊
1
用em算法估计高斯混合模型的参数,实现对N维数据的聚类
2021-10-14 17:18:10 356KB EM算法 GMM 高斯混合模型 gaussian
1
在matlab2019下亲测有效~ In spatial domain, denoising pepper&salt noises by mean, median and Gaussian filters, respectively,
2021-10-14 08:32:21 135KB 图像滤波
1
实现用c++实现高斯噪声的产生,可以对图像进行添加,可以设定高斯噪声的均值和方差。
2021-10-13 21:32:58 306KB 高斯 噪声
1
matlab加噪声代码GPz 2.0 不确定和不完整数据的异方高斯过程 介绍 这是所描述的稀疏异方差高斯过程的matlab实现。 数据集被认为是由输入组成和目标输出,其中n是数据集中的样本数,d是输入的维数。 目标由输入函数生成 加上附加噪声: 。 这项工作的目的是找到最简单的函数,该函数在给定输入的情况下最大化观察目标输出的可能性。 径向基函数(RBF) 该模型优化了由m个径向基函数的线性组合生成的数据的概率。 在提出的解决方案中,RBF具有不同的方法,请参见图1,如下所示: 全局长度标度(GL):所有基础函数共享相同的长度标度。 可变长度标度(VL):每个基础都有特定的长度标度。 全局对角线(GD):所有基函数共享相同的对角协方差。 可变对角线(VD):每个基础都有特定的对角协方差。 全局协方差(GC):所有基函数共享相同的完全协方差。 可变协方差(VC):每个基础都有特定的完整协方差。 图1:在相同数据上使用不同数量的基函数(m)训练GPVL,GPVD和GPVC的结果。 椭圆表示RBF的学习协方差。 对数边际可能性显示在每个图上方(Almosallam,2017) 异方差噪声 该
2021-10-13 20:51:42 9.47MB 系统开源
1
GMM-GMR是一组Matlab函数,用于训练高斯混合模型(GMM)并通过高斯混合回归(GMR)检索广义数据。 它允许通过使用期望最大化 (EM) 迭代学习算法对高斯混合模型 (GMM) 中的任何数据集进行有效编码。 通过使用此模型,高斯混合回归 (GMR) 可用于通过指定所需输入来检索部分输出数据。 然后它作为一个泛化过程,计算关于部分观察数据的条件概率。 提供了一个样本来加载包含多个轨迹数据[t,x]的数据集,其中t是时间值,x是3D中的位置。 然后在 GMM 中对联合概率 p(t,x) 进行编码,GMR 用于检索 p(x|t),即每个时间步的预期位置。 这用于检索提供的轨迹的平滑广义版本。 源代码是EPFL/CRC Press 出版的“Robot Programming by Demonstration: A Probabilistic Approach”一书中描述的算法的实现
2021-10-13 20:44:17 77KB matlab
1
自动生成一个随机的满足高斯分布的0-1之间的数字,输入的参数为高斯分布的均值和方差
2021-10-13 20:38:59 316KB 高斯噪声 自动生成
1
这是一个AWGN信道下,编译码仿真的C程序。本人已经用它产生数据绘制折线图!包含编码,译码,信道模拟,误码率计算 ……
2021-10-13 18:51:20 2KB 编译码仿真 高斯白噪声 BPSK
1