PyTorch图像模型 赞助商 非常感谢我的的支持! 除了以上链接的赞助商之外,我还从以下位置获得了硬件和/或云资源: 英伟达( ) TFRC( ) 我很幸运能够自己投入大量时间和金钱来支持这个项目和其他开源项目。 但是,随着项目范围的扩大,需要外部支持来继续当前的硬件,基础设施和电力成本轨迹。 什么是新的 2021年5月5日 从添加MLP-Mixer模型和端口预训练权重 从添加CaiT模型和预训练权重 从添加ResNet-RS模型和权重。 添加CoaT模型和权重。 感谢 为TResNet,MobileNet-V3,ViT模型添加新的ImageNet-21k权重和微调的权重。 谢谢 添加GhostNet模型和权重。 谢 更新ByoaNet注意模型 改进SA模块的初始化 将基于实验的独立Swin attn模块和swinnet 实验的一致“ 26t”模型定义。 添加改进的E
2021-11-14 12:09:56 14.12MB pytorch resnet pretrained-models mixnet
1
matlab离散傅里叶变换平滑代码Matlab_2D_DFT_Image_Filtering Matlab中输入图像f(x,y)的离散傅立叶变换F(u,v)实现。 在这个项目中,我们被要求对大小为M N的输入图像f(x,y)进行离散傅里叶变换F(u,v),然后将理想的低通滤波器H(u,v)应用于平滑图像。 首先,我们需要对原始图像进行零填充以生成大小为P Q的新图像,其中P = 2M-1和Q = 2N-1,然后将原始图像乘以(-1)^(x + y),以便F(u,v)的低频位于我们域的中心。 该存储库包括项目的源代码(Matlab)。
2021-11-13 15:32:08 3KB 系统开源
1
ftpClient工具类,实现上传下载预览,实现doc,docx转pdf加水印,支持pdf,doc,docx,image自定义水印预览下载,功能强大
2021-11-12 18:02:53 36KB java
GoogLeNet用于图像分类 TensorFlow的实现一起(CVPR'15)。 该存储库包含使用预训练模型进行自然图像分类的示例,以及从头开始在数据集上训练Inception网络(测试集的准确度为93.64%)。 可以从 下载CIFAR-10上的预训练模型。 本文的GoogLeNet架构: 要求 Python 3.3以上 实施细节 GoogLeNet模型在定义。 Inception模块在定义。 使用预训练模型进行图像分类的示例在 。 在example ,有一个在CIFAR-10上从头开始训练网络的 。 用于测试预训练模型 重新缩放图像,使最小边等于224,然后再输入模型。 这
2021-11-12 15:07:49 9.44MB tensorflow image-classification inception cifar
1
网管qqcc 片机图片取模工具+注册码Image2Lcd+V3[1].2.rar 下载 确认可注册。
2021-11-12 14:21:09 731KB image lcd 注册 单片机
1
unsupervised text-to-image synthesis代码 无注释。
2021-11-12 11:05:34 153KB python
1
为内窥镜伪影检测和分割 (EAD2020) 挑战提出的框架的实施 - 检测任务 挑战: : 我们的方法在人工制品检测任务中排名。 首先,最好阅读论文以了解一般框架: 可以在获取已安装 PyTorch 和 Detectron2 环境的 Docker 映像 本工作中使用的对象检测模型(Faster RCNN、Cascade RCNN 和 RetinaNet)基于构建 Ensemble and Test Time Augmentation改编自 对于引用,请使用以下 BibTeX 条目 @inproceedings { polat2020endoscopic , title = { Endoscopic Artefact Detection with Ensemble of Deep Neural Networks and False Positive Elimination.
1
使用StarWind V2V Image Converter这个工具很快就转换好了,需要的可以下载备用。这个工具支持不同虚拟机文件格式互相转换,支持VHD(X),VMDK,IMG和QCOW之间的互相转换,也就是说就算虚拟机是不同的软件,但依然可以把系统镜像转换到其他格式正常使用。
2021-11-12 09:55:36 38.01MB kvm virtualbox esxi hyper-v
1
本人对于深度残差网络理解以及深度残差网络论文原文(作者何凯明)
2021-11-12 09:46:19 652KB 深度学习
1
美国埃默里大学医学院Xiaofeng Yang老师课题组新出的这篇论文对近几年医学图像配准深度学习方法进行了全面综述,根据其方法、特征和流行程度分为七类,对每个类别进行了详细的调研,强调了其重要的点及其相应挑战,帮助读者更好地了解当前的研究现状和思路,并且使用基准数据集对基于深度学习的肺和脑配准方法进行了全面比较,最后也介绍了未来的研究方向。
2021-11-11 21:00:55 1.1MB Medical_Image_Re
1