简单来说,卷积(或内积)就是一种先把对应位置相乘然后再把结果相加的运算。(具体含义或者数学公式可以查阅相关资料)
1
数据融合matlab代码JSM_SVM_MLL 编码是针对论文“ Gao,Q.和Lim,S.,2019. Matlab的实现”。该方法用于超光谱图像分类的支持向量机和联合稀疏模型​​的概率融合。GIScience和遥感。(DOI: 10.1080 / 15481603.2019.1623003“ 为了使用该代码,请确保所有文件夹都在当前的Matlab路径中,并对本文中使用的三个数据集运行de​​mo_IP,demo_PU,demo_SA。 本文中包含的数据集可从上免费下载。 如有任何建议和评论,请将其发送给作者:。
2022-05-05 16:08:34 30.93MB 系统开源
1
实验报告——SVM手写数字识别实现
2022-05-05 14:35:08 1.03MB 支持向量机 算法 机器学习 模式识别
1
回归预测 | MATLAB实现CNN-LSTM多输入单输出(完整源码和数据) 本次运行测试环境MATLAB2020b,MATLAB实现CNN-LSTM多输入单输出预测。
2022-05-05 12:05:50 135KB 源码软件 回归 matlab cnn
使用MATLAB的最新的app功能开发的一个带界面车牌识别系统,包括车牌定位,字符分割,CNN识别。打开后,双击,License_plate_recognition_developing.mlapp,启动app对话框,然后点击绿色三角形运行即可。
2022-05-05 12:05:45 3.21MB matlab cnn 源码软件 人工智能
时序预测 | MATLAB实现CNN(卷积神经网络)时间序列预测(完整源码和数据) 数据为一维时序列数据,运行环境MATLAB2018b及以上。
机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉就是用机器代替人眼来做测量和判断。机器视觉系统是通过机器视觉产品(即图像摄取装置,分CMOS和CCD两种)将被摄取目标转换成图像信号,传送给专用的图像处理系统,得到被摄目标的形态信息,根据像素分布和亮度、颜色等信息,转变成数字化信号;图像系统对这些信号进行各种运算来抽取目标的特征,进而根据判别的结果来控制现场的设备动作。 卷积神经网络仿造生物的视知觉(visual perception)机制构建,可以进行监督学习和非监督学习,其隐含层内的卷积核参数共享和层间连接的稀疏性使得卷积神经网络能够以较小的计算量对格点化(grid-like topology)特征,例如像素和音频进行学习、有稳定的效果且对数据没有额外的特征工程(feature engineering)要求。
2022-05-05 09:09:03 120.16MB cnn 源码软件 文档资料 人工智能
DnCNN-张量流 TIP2017论文的张量流执行器, 模型架构 结果 BSD68平均结果 BSD68数据集上不同方法的平均PSNR(dB)结果。 噪音等级 BM3D 无线网络 锁相环 MLP 脑脊液 TNRD 神经网络 神经网络 DnCNN-张量流 25 28.57 28.83 28.68 28.96 28.74 28.92 29.23 29.16 29.17 Set12平均结果 噪音等级 神经网络 DnCNN-张量流 25 30.44 30.38 要求 tensorflow >= 1.4 numpy opencv 数据集 我使用BDS500数据集进行训练
2022-05-05 06:15:24 69.14MB tensorflow image-denoising residual-learning dncnn
1
PyTorch implementation of 1712.06087 "Zero-Shot" Super-Resolution using Deep Internal Learning
2022-05-04 22:40:34 829KB Python开发-机器学习
1
使用scikit-learn在python中进行SVM MNIST数字分类 该项目提出了的众所周知的问题。 出于本教程的目的,我将使用具有原始像素特征的算法。 该解决方案使用易于使用的机器学习库以python编写。 该项目的目标不是达到最先进的性能,而是教您如何使用sklearn的SVM在图像数据上训练SVM分类器。 尽管该解决方案并未针对高精度进行优化,但结果还是不错的(请参见下表)。 如果您想获得最佳性能,这两个资源将向您展示当前的最新解决方案: 下表显示了与其他模型相比的一些结果: 方法 准确性 评论 随机森林 0.937 简单的一层神经网络 0.926 简单的2层卷积网络 0.981 支持向量机 0.9852 C = 5,伽玛= 0.05 线性SVM + Nystroem内核逼近 线性SVM +傅立叶核逼近 项目设置 本教程是在Ubuntu 18.10上编写和测试的。 项目包含具有所有必要库的Pipfile Python-版本> = 3.6 pipenv-软件包和虚拟环境管理 麻木 matplotlib scikit学习 安装Python。 git克隆仓
1