AutoBlur_CNN_Features 基于以下代码: : 脚本,用于提取具有不同ConvNet的CNN深度特征,然后将其用于具有线性核的SVM分类器的图像分类任务,涉及以下小型数据集:足球[1],飞鸟[2],17flowers [3],ImageNet-6Weapons [4]和ImageNet-7节肢动物[4]。 使用VGG16提取的功能或MobileNet进入SVM分类器。 允许比较使用完整图像或使用AutoBlur方法过滤之间的差异 随代码一起提供了Soccer数据集,因此可以轻松对其进行测试: 足球:原始图像 SoccerAutoBlurBB:应用AutoBlur过滤技术并使用相应的边界框裁剪后的原始图像 参考: [1]范德·韦耶尔(J. van de Weijer),施密德(C. Schmid),着色局部特征提取,Proc.Natl.Acad.Sci.USA。
1
很全面,很深刻的卷积神经网络(CNN)原理讲解。
2021-11-13 21:15:26 841KB CNN原理讲解
1
matlab中批量导入图像代码 消息: 最先进的降噪性能 可用于即插即用的图像恢复 -18/12/2019 I recommend to use the PyTorch code for training and testing. The model parameters of MatConvnet and PyTorch are same. 合并批量归一化(PyTorch) import torch import torch . nn as nn def merge_bn ( model ): ''' merge all 'Conv+BN' (or 'TConv+BN') into 'Conv' (or 'TConv') based on https://github.com/pytorch/pytorch/pull/901 by Kai Zhang (cskaizhang@gmail.com) https://github.com/cszn/DnCNN 01/01/2019 ''' prev_m = None for k , m in list ( model . named_ch
2021-11-13 16:46:19 143.56MB 系统开源
1
使用深度学习检测疟疾 :mosquito: :microbe: 参与者的Hack 2020是一项计划,可帮助学生利用OPEN SOURCE成长。 HakinCodes的这项倡议通过为各种各样的OPEN SOURCE项目做出贡献以及与导师和组织团队进行互动的机会,为您提供了一个最佳平台,以提高您的技能和能力。 :pushpin: 介绍 该机器学习Web应用程序利用两层卷积神经网络来处理细胞图像,并以近95%的准确度预测它们是否为疟疾。 用于处理深度学习算法的来自美国国家医学图书馆的官方NIH网站,该网站是来自疟疾筛查研究活动的稀薄血液涂片图像中分段细胞的存储库。 :bullseye: 项目目的 在疟疾不再流行的地方(例如在美国),医疗保健提供者可能对该疾病不熟悉。 看到疟疾患者的临床医生可能会忘记在潜在的诊断中考虑疟疾,而不订购所需的诊断测试。 实验室工作人员可能缺乏疟疾经验,并且在显微镜下检查血液涂片时无法发现寄生虫。 疟疾是一种急性发热性疾病。
2021-11-13 15:49:34 92.85MB deep-learning flask-application malaria cnn-keras
1
脑年龄预测 最后一年的项目-深度学习CNN预测大脑年龄
2021-11-13 10:43:43 138KB Python
1
卷积神经网络细节讲解,其中对CNN的各个基本组件进行了充分的论述。还有讲解了dropout,以及如何理解dropout,最后对目前存在的典型的CNN架构进行了很详细的讲解,不管你是有经验的,还是新手,都可以从中得到一些启发
2021-11-12 19:14:52 21.48MB CNN dropout
1
利用PyTorch实现卷积神经网络LeNet-5,详情可参考博客:https://blog.csdn.net/didi_ya/article/details/121289390
2021-11-12 19:03:56 46KB python pytorch 卷积神经网络 CNN
1
UTKFaceCNN 此回购是使用标准CNN骨干进行年龄,性别和种族预测的工作。
2021-11-12 15:20:51 5KB Python
1
随着计算机视觉近几年的发展, 相关工作者越来越侧重人工智能算法在电力安全管控系统的实际应用. 本文针对电力检修工作人员安全带规范问题, 基于Mask R-CNN算法提出了一种新型高空作业安全带低挂高用违规检测算法, 实时高效率完成作业者安全带违规检测问题. 针对安全带挂环违规现象的复杂性和场景多变性等问题, 本文提出实用于安全带检测和人体关键点信息相结合检测的Mask-Keypoints R-CNN新型高空作业安全带违规挂法的检测方法, 该算法基于人体关键点定位检测模块进行裁剪人体关键部位有用安全带数据集, 结合安全带检测模块进行判断作业人员违规情况, 算法本身具有很强的实用性和高效性, 并取得了较高的精确率.
1
采用一维CNN神经网络算法,对西储大学轴承数据集分为10中故障类型进行故障识别,最终准确率很高;同时算法结构灵活,可以自定制网络及优化器,满足多张故障数据集。
1