Anti-Cheat Toolkit 2023 v2023.2.2
2024-11-22 16:56:36 1.21MB unity
1
NewActive.exe
2024-11-22 16:30:25 3.63MB
1
NVIDIA UFM(Unified Fabric Manager)企业版用户手册(版本6.15.1)涵盖了用于管理InfiniBand规模计算环境的UFM平台的各个方面。 文档开始介绍了UFM的主要特点、新功能和变更、不支持的功能/特性、安装说明、此版本中修复的错误、已知问题以及历史变更和新功能。UFM的主要优势包括中央织物管理控制台、深入的织物可视性和控制、多隔离应用环境的支持、面向服务的自动资源配置、快速解决织物问题的能力、无缝故障转移处理和开放架构。UFM的主要功能模块包括织物仪表板、织物分段(PKey管理)、织物发现和物理视图、中央设备管理、监控、配置、织物健康、日志记录和高可用性。 此外,手册详细介绍了UFM的软件架构,包括图形用户界面、客户端API、客户端SDK工具、UFM服务器、子网管理器、NVIDIA可扩展层次聚合和还原协议(SHARP)聚合管理器、性能管理器、设备管理器、UFM开关代理和通信协议。文档还涵盖了UFM的安装和初始配置过程、历史遥测收集和UFM服务器软件的运行方式。 NVIDIA UFM(Unified Fabric Manager)企业版用户手册是针对InfiniBand大规模计算环境管理的详尽指南,特别适用于那些需要高效管理复杂网络架构的IT专业人士。版本6.15.1的手册包含了关于UFM平台的全面信息,帮助用户理解和利用其强大的功能。 手册的【关键特点】部分强调了UFM的核心优势。UFM提供了一个【中央织物管理控制台】,使管理员能够在一个集中化的界面上监控和控制整个网络。这一特性极大地简化了日常管理和故障排查任务。UFM提供了【深入的织物可视性和控制】,允许用户对网络的各个方面进行精细监控,确保高性能和稳定性。再者,它支持【多隔离应用环境】,能够在共享的硬件基础设施上安全地运行多个独立的应用环境,提高资源利用率。此外,UFM还实现了【面向服务的自动资源配置】,可以根据需求自动分配和调整资源,大大提升了效率。UFM还有助于【快速解决织物问题】,通过其内置的诊断工具和智能分析功能,能迅速定位并解决问题。同时,UFM具备【无缝故障转移处理】能力,确保服务的连续性和高可用性。UFM基于【开放架构】设计,允许与其他系统集成,增强了其灵活性和扩展性。 手册的【主要功能模块】部分详细列出了UFM的不同组件及其作用。例如,【织物仪表板】提供了一目了然的网络状态概览;【织物分段(PKey管理)】允许精细控制网络分区;【织物发现和物理视图】用于自动识别和可视化网络拓扑;【中央设备管理】集中管理所有连接的设备;【监控】和【配置】模块则负责网络性能和配置的实时监控与调整;【织物健康】确保网络的健康状态;【日志记录】记录活动和事件,便于审计和故障分析;而【高可用性】确保系统的稳定运行,即使在单点故障情况下也能正常工作。 在【软件架构】部分,手册详细介绍了UFM的各个组件,如【图形用户界面】(GUI),提供了直观的交互方式;【客户端API】和【客户端SDK工具】为开发人员提供了接口和工具来扩展UFM的功能;【UFM服务器】作为核心服务运行,处理请求并管理数据;【子网管理器】协调网络中的节点;【NVIDIA可扩展层次聚合和还原协议(SHARP)聚合管理器】优化了网络资源的聚合;【性能管理器】监控和调整网络性能;【设备管理器】负责设备的管理和配置;【UFM开关代理】是与硬件交换机交互的桥梁;而【通信协议】则确保了各组件间的有效通信。 在【安装和配置】章节,用户可以找到详细的【安装说明】,包括【支持的设备】列表、【系统要求】、从先前版本升级的步骤,以及如何处理【历史遥测收集】。此外,手册还涵盖了【UFM服务器软件的运行方式】,指导用户正确部署和运行UFM以确保其高效工作。 手册的【问题与修复】部分列出了【此版本中修复的错误】、【已知问题】,以及【历史变更和新功能】的完整历史记录,帮助用户了解UFM的演进过程,以及如何应对可能出现的问题。 NVIDIA UFM企业版用户手册6.15.1版是一个综合性的参考资料,为管理员提供了全面的指导,以充分利用UFM的强大功能来管理InfiniBand网络,实现高效、可靠的计算环境。
2024-11-22 16:18:18 20.18MB fabric
1
强化学习是一种人工智能领域的学习方法,它通过与环境的交互,使智能体学会如何在特定环境中采取行动以获得最大化的累积奖励。在这个过程中,智能体并不需要事先知道环境的具体动态模型,而是通过试错的方式逐步优化其策略。强化学习在游戏AI、机器人控制、自然语言处理、推荐系统等多个领域都有广泛的应用。 史忠植老师是中国强化学习领域的知名专家,他的强化学习PPT很可能包含了对强化学习的基本概念、核心算法和最新研究成果的深入讲解。PPT可能会涵盖以下几个方面: 1. 强化学习的基本概念:如状态(state)、动作(action)、奖励(reward)、策略(policy)和价值函数(value function)等,以及它们在强化学习框架中的角色。 2. Q-learning算法:这是强化学习中经典的离策略学习算法,通过更新Q值表来逼近最优策略。Q-learning的核心思想是最大化未来奖励的期望,即Q值。 3. SARSA算法:这是一种在线、近策略的学习算法,它在每一步更新当前策略下的Q值,使得智能体在实际执行中不断调整策略。 4. Deep Reinforcement Learning (DQN):随着深度学习的发展,将神经网络引入强化学习,解决了高维度状态空间的问题,如Atari游戏中的应用。 5. 抵抗性策略(Policy Gradient)方法:这类算法直接对策略进行优化,如REINFORCE和Actor-Critic算法,适用于连续动作空间。 6. 蒙特卡洛学习:基于完整经验序列的学习方法,分为第一类和第二类蒙特卡洛方法,用于计算策略的价值。 7. 模型学习与规划:如动态规划、模型预测控制等,这些方法利用环境模型来指导策略的优化。 国外的RL教材则可能提供了更全面、国际化的视角,涵盖了更多的理论基础、最新进展和实践案例。这些教材可能包括《Reinforcement Learning: An Introduction》(Sutton & Barto) 和《Deep Reinforcement Learning》等经典著作,它们会详细阐述强化学习的理论框架、算法分析以及实际应用中的挑战和解决方案。 通过学习这些资料,你可以对强化学习有深入的理解,掌握如何设计和实现强化学习算法,并能够解决实际问题。同时,史忠植老师的PPT和国外教材的结合,将提供一个理论与实践并重的学习路径,帮助你在强化学习领域建立起坚实的基础。
2024-11-22 15:56:40 5.49MB
1
CISP-PTE注册信息安全专业人员渗透测试工程师-认证课件资料:2个版本,共25个课件文件 01.WEB安全简介 02.信息收集 03.漏洞扫描 04.HTTP协议 05.SQL注入之基础篇 07.暴力破解 08.文件上传漏洞 09.命令执行漏洞 10.文件包含漏洞 11.社会工程学 12.ARP欺骗 13.xss跨站脚本漏洞 14.CSRF跨站请求伪造 15.SSRF
2024-11-22 15:47:47 44.88MB 渗透测试 CISP-PTE
1
MasterMind 游戏 计算机编程 II (Java) 课程,2013 年秋季 - 简单的 Master Mind game 在MVC设计模式(模型/视图/控制器)中实现 [可执行 JAR 文件] ( ) 项目贡献者: 达莉亚·艾曼·艾哈迈德 Yomna Ali El-Din Fatma Gamal El-Nagar
2024-11-22 15:30:35 139KB Java
1
标题中的"SVM手写数字识别"指的是支持向量机(Support Vector Machine,简称SVM)在手写数字识别领域的应用。SVM是一种监督学习模型,主要用于分类和回归分析,尤其在小样本数据集上表现优秀。手写数字识别是模式识别领域的一个经典问题,常见于OCR(光学字符识别)系统,例如自动读取邮政编码或银行支票上的手写数字。 MATLAB是一种广泛使用的编程环境,特别适合于数值计算和数据分析,包括机器学习任务。在本项目中,MATLAB被用作实现SVM手写数字识别的工具。它提供了方便的SVM函数库,如fitcsvm,可以用于训练和优化模型,以及predict函数来对新数据进行预测。 描述中的"MATLAB"提示我们,我们将使用MATLAB的内置函数和工具箱来实现SVM模型。这可能涉及到以下步骤: 1. **数据预处理**:我们需要导入手写数字的数据集,可能是如MNIST这样的标准数据集,包含大量的手写数字图像。这些图像通常需要进行灰度化、归一化和尺寸规范化等预处理步骤,以便输入到SVM模型中。 2. **特征提取**:由于SVM处理的是向量形式的数据,我们需要将图像转换为特征向量。常见的方法是使用像素强度作为特征,或者使用更高级的方法,如局部二值模式(LBP)、高阶统计特征或图像的直方图。 3. **构建SVM模型**:利用MATLAB的`fitcsvm`函数,我们可以创建一个SVM分类器,选择合适的核函数(如线性、多项式、RBF等),并调整正则化参数C和核函数参数γ。 4. **模型训练**:将预处理后的数据分为训练集和验证集,使用训练集数据训练SVM模型,并通过交叉验证来优化参数,确保模型的泛化能力。 5. **模型评估**:使用验证集评估模型的性能,如准确率、精确率、召回率和F1分数等指标。 6. **预测与测试**:使用测试集数据检验模型的预测能力,确认模型在未见过的数据上的表现。 标签"matlabSVM"进一步强调了我们将重点讨论如何在MATLAB环境中实现SVM算法。在实际操作中,MATLAB提供了详细的文档和示例代码,帮助用户理解和应用SVM。 压缩包内的"88760SVM手写数字识别"可能是源代码文件,包含了上述过程的MATLAB脚本。通过阅读和运行这些代码,你可以深入理解SVM如何应用于手写数字识别,以及MATLAB在处理此类问题时的灵活性和效率。 这个项目提供了一个很好的机会,让你实践机器学习中的分类问题,特别是理解和支持向量机在解决复杂模式识别任务中的强大功能。通过完成这个项目,你不仅可以掌握SVM的基本概念,还能增强在MATLAB环境下处理实际问题的能力。
2024-11-22 15:23:00 10.96MB
1
Unity插件ASE,全称Amplify Shader Editor,是一款强大的图形着色器编辑工具,专为Unity游戏引擎设计。这款插件提供了直观的可视化界面,让开发者无需编写复杂的Shader代码,就能创建出复杂的图形效果。ASE 1.8.9.035是该插件的一个版本,它可能包含了一些特定的改进、修复和新特性。 在Unity中,着色器(Shader)用于控制物体表面的外观,包括颜色、光照、纹理等视觉元素。ASE简化了这个过程,让开发者通过拖拽节点、连接线的方式构建Shader逻辑。以下是ASE的一些核心功能和知识点: 1. **可视化编辑器**:ASE提供了一个易于理解的节点系统,允许用户通过图形化界面创建和编辑着色器。每个节点代表一个计算步骤,线则表示数据流。这种界面对于新手友好,也便于团队协作。 2. **预设库**:ASE包含了大量的预设节点和效果,如基本的颜色混合、纹理应用、光照模型等。这些预设可以快速构建复杂的图形效果,节省开发时间。 3. **自定义节点**:除了内置的节点,开发者还可以创建自己的自定义节点,以满足特定项目的需求。这增加了ASE的灵活性和可扩展性。 4. **实时预览**:ASE支持在Unity编辑器内实时预览Shader效果,这有助于快速调整和优化效果,减少了在游戏运行时才发现问题的情况。 5. **兼容性**:ASE与Unity的大部分功能和组件兼容,包括光照、粒子系统、动画等。这使得开发者能够在不牺牲其他功能的前提下,利用ASE增强图形表现力。 6. **代码生成**:ASE生成的Shader代码是基于Unity的 Shader Graph语言,这意味着即使没有ASE,生成的代码也能直接在Unity中使用。这对于代码调试和学习Shader编程也有帮助。 7. **教程与社区支持**:ASE有一个活跃的开发者社区,提供各种教程、示例和解答,帮助用户学习和解决问题。这降低了使用门槛,增强了学习资源。 8. **性能优化**:尽管ASE简化了Shader创建,但开发者仍需要注意性能优化。ASE允许用户查看和分析Shader的复杂度,以便在保证视觉效果的同时,尽可能降低对硬件的要求。 9. **跨平台支持**:由于Unity本身的跨平台特性,ASE创建的Shader同样适用于多种平台,包括PC、移动设备、VR/AR设备等。 通过ASE插件,Unity开发者可以更轻松地实现复杂的图形效果,比如屏幕空间反射、体积光照、次表面散射等高级技术,而不需要深入研究底层的图形学原理。同时,ASE的易用性和灵活性也使得它成为Unity项目中提升图形质量的重要工具。
2024-11-22 15:07:51 78.1MB unity 游戏引擎
1
本程序是基于网墓程序(单用户版)修改而成,在原有基础上完善了部分程序错误,图片无法显示等,并新增了为亲人献烟,酒,名车等功能,主要针对男性。                         本程序主要提供给个人网站的单个用户使用,下载后更改用户界面即可,本程序主要完成以下功能:网上祭奠: 用户可在逝者的墓地及纪念馆里完成献花、上供、烧香、焚烛、点歌、留言以及带有男性个性化的的献烟、献酒、献车等祭奠和纪念活动;用户可根据需要调整祭奠活动内容及界面后台留言管理:对网友的祭拜留言进行管理,管理账号:admin管理密码:admin888功能简介:    1:增加祭悼方式:用户可根据自己对传统风俗的理解在动态的增加悼念方式,即在本站现有悼念方式献花、上供等方式的的基础上增加其它的悼念方式, 操作简单,没有后台,是清明节改善传统风俗,绿色悼念的时尚选择适用本程序者请做好网络花园文学网的友情连接,谢谢您的支持。
2024-11-22 15:02:31 1.23MB asp源码
1
本文主要探讨了高速列车转向架系统部件的可靠性计算方法,通过建立模型并基于实际数据来分析转向架轮对和轴箱、悬挂装置、构架装置、基础制动装置、驱动装置等关键部件的可靠性。研究的目的是确保高速列车的安全可靠运行。 一、可靠性模型的建立与应用 在高速铁路领域,可靠性研究是保障列车安全运行的重要环节。本文作者云婷、秦勇、郑津楚依托北京交通大学轨道交通控制与安全国家重点实验室,通过分析真实数据与应用常见的可靠性分布模型,构建了转向架系统各部件的可靠性模型。模型的建立需要采集大量的运行数据,这包括列车的运行里程、维修记录、故障发生情况等实际操作中的统计数据。模型的目的是为了计算出百万公里平均故障率以及平均故障间隔公里等指标。 二、计算与分析方法 1. 参数估计:研究者使用极大似然估计法对各个转向架部件的参数进行估计。极大似然估计是一种统计学方法,用于从一个概率模型中得出观测数据的概率,从而估计模型的参数。在这个过程中,假设已知的模型形式,根据观测数据来估计模型参数。 2. 分布模型的选择与检验:研究者通过对A-D检验法确定最优分布,以拟合各个部件的实际故障数据。A-D检验是用于检验数据是否符合特定理论分布(例如正态分布、指数分布等)的一种统计检验方法。检验的目的是判断所选择的分布模型是否适合真实数据的特性。 三、转向架系统中各个装置的可靠性分析 1. 转向架轮对和轴箱:轮对和轴箱是高速列车运行中的关键承载部件,其可靠性直接影响到列车的稳定性和安全性。 2. 悬挂装置:悬挂装置是保持列车稳定运行,降低震动,保证乘车舒适度的重要装置。 3. 构架装置:构架装置是指列车车身的主要支撑结构,其可靠性是列车整体稳定性的重要保障。 4. 基础制动装置:基础制动装置负责列车的安全制动,是确保列车安全的关键部分。 5. 驱动装置:驱动装置是提供列车动力,保证列车能够达到指定速度的重要部分。 四、可靠性分析方法 作者指出,在可靠性分析方法的研究过程中,已经有许多学者提出了包括故障树分析、可靠性框图、故障模式与影响分析、马尔可夫模型、Petri网、蒙特卡罗法、GO法和事件树分析法等多种定性和定量分析方法。这些方法在轨道交通领域都有着广泛的应用。但对于高速列车转向架系统各部件的可靠性分析,之前的研究并没有涉及。 五、总结与展望 本文通过分布参数的优化估计和拟合优度的检验方法对部件的运行可靠性进行了计算和分析。研究结果对于高速列车转向架系统的维护、可靠性预测和改进具有重要的参考价值。文章同时建议,应持续跟踪最新的可靠性理论与方法,以及不断更新的实际数据,以提高高速列车的运行可靠性。此外,对于高速列车的可靠性研究,应关注国际标准规范,确保研究的国际化水平和通用性。 关键词包括参数估计、A-D检验、可靠性等,这些术语在可靠性工程中具有重要意义。中图分类号U298.110表示这篇文章属于高速铁路领域的研究范畴。 基金项目和作者简介部分显示了本研究得到了特定的科研基金支持,并提供了研究团队成员的信息。这表明了研究的权威性和团队的专业背景。 此外,文中还简要介绍了基本故障分布模型的概念,包括指数分布和正态分布。指数分布适用于描述故障特征不随使用寿命而变化的情况,它的故障率是恒定的。正态分布,也称为高斯分布,通常用于分析磨损或老化等原因导致的故障。这些分布模型在可靠性分析中被广泛应用,用于预测和模拟部件的故障行为。
2024-11-22 14:36:23 546KB 首发论文
1