通过深度学习增强的视网膜光学相干断层扫描图像论文,pdf格式
2021-11-17 16:43:49 7.57MB cnn denoise
1
深度卷积神经网络CNN的Theano实现(lenet),还包括一个单独的卷积层网络
2021-11-17 15:17:05 173KB cnn theano lenet
1
CNN用于脑室分割 这是在Neurostart hacka上使用CNN分割CT数据的结果。 这是用于脑室分割的全卷积人工神经网络的示例。 这是“个人3D脑图集”项目的第一步。 在Burdenko研究所的帮助下,基于FEFU(远东联邦大学)开发地图集。 感谢您提供数据,并向Dmitry Samborsky,Arthur Biktimirov和“ CPD C 305”实验室的工作人员提供建议。
2021-11-17 11:32:02 34.85MB JupyterNotebook
1
Matlab代码sqrt B-CNN:双线性CNN,用于细粒度的视觉识别 由林宗玉,Aruni RoyChowdhury和Subhransu Maji在麻省大学阿默斯特分校创建 介绍 由Yuqi Huo修改。此存储库包含用于在B-CNN [ICCV 2015]和改进的B-CNN [BMVC 2017]论文中重现结果的代码: @inproceedings{lin2015bilinear, Author = {Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji}, Title = {Bilinear CNNs for Fine-grained Visual Recognition}, Booktitle = {International Conference on Computer Vision (ICCV)}, Year = {2015} } @inproceedings{lin2017impbcnn, Author = {Tsung-Yu Lin, and Subhransu Maji}, Booktitle = {British
2021-11-17 11:01:53 120KB 系统开源
1
Matlab代码sqrt B-CNN:双线性CNN,用于细粒度的视觉识别 由林宗玉,Aruni RoyChowdhury和Subhransu Maji在麻省大学阿默斯特分校创建 介绍 该存储库包含用于在B-CNN [ICCV 2015]和改进的B-CNN [BMVC 2017]论文中重现结果的代码: @inproceedings{lin2015bilinear, Author = {Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji}, Title = {Bilinear CNNs for Fine-grained Visual Recognition}, Booktitle = {International Conference on Computer Vision (ICCV)}, Year = {2015} } @inproceedings{lin2017impbcnn, Author = {Tsung-Yu Lin, and Subhransu Maji}, Booktitle = {British Machine Visi
2021-11-17 10:58:48 120KB 系统开源
1
主要内容是采用DEAP数据集将脑电信号进行频域分段并提取其微分熵特征,为了充分利用空间特征,结合微分熵特征将其构建为一个三维脑电特征,输入到连续卷积神经网络,并最终取得了90.24%的准确率。 提出了一种脑电特征的三维输入形式,并将其输入到连续卷积神经网络中进行情感识别。三维输入的优点是在集成多个频带的微分熵特征的同时保留电极之间的空间特征。 ———————————————— 版权声明:本文为CSDN博主「qq_3196288251」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。 原文链接:https://blog.csdn.net/qq_45874683/article/details/121356408
【图像识别】基于卷积神经网络cnn实现银行卡数字识别matlab源码.zip
2021-11-16 22:25:10 2.6MB 简介
1
CNN-文本分类-keras 它是中作为功​​能api的简化实现 要求 训练 运行以下命令,如果要更改它将运行100个纪元,只需打开 python model.py 对于新数据 您必须重建词汇表然后进行培训。 引文 @misc{bhaveshoswal, author = {Bhavesh Vinod Oswal}, title = {CNN-text-classification-keras}, year = {2016}, publisher = {GitHub}, journal = {GitHub repository}, howpublished =
2021-11-16 20:32:13 481KB nlp text-mining theano deep-learning
1
四朵花 这是一个图像识别项目,基于tensorflow,现有的CNN网络可以识别多个花的种类。适合新手对使用tensorflow进行一个完整的图像识别过程有一个大致轮廓。项目包括对数据集的处理,从硬盘读取数据,CNN网络的定义,训练过程,还实现了一个GUI界面用于使用训练好的网络。 要求 安装Anaconda 引入环境environment.yaml conda env update -f=environment.yaml 快速开始 git clone这个项目 解压input_data.rar到你喜欢的目录。 修改train.py中 train_dir = 'D:/ML/flower/inpu
2021-11-16 20:14:10 6.24MB tensorflow cnn python3 TensorflowPython
1
- 笔记这是将该应用程序投入生产的示例,您应该使用celery或aws lambda。
2021-11-16 17:23:32 15.13MB machine-learning django keras image-classification
1