在室内条件下提取了苯乙烯在不同土壤中的光谱诊断波段及其范围,并以其作为土壤中苯乙烯识别及其含量预测的依据。采用微分处理法与光谱数据转换法对土壤光谱反射率进行处理,以增大样品之间的光谱变化差异,并采用多元线性回归(SMLR)、偏最小二乘回归(PLSR)和支持向量机(SVMR)方法建模以预测不同土壤中的苯乙烯含量。结果表明,受苯乙烯污染的不同土壤的光谱特征分别位于1800,2200,2400 nm附近;受自身理化性质及苯乙烯含量影响,土壤光谱反射率的降速先增大后减小,直至苯乙烯在土壤中饱和,反射率变化趋于稳定。PLSR模型对土壤中苯乙烯含量的预测效果最优,SMLR模型次之,SVMR模型较差。PLSR模型的决定系数为0.982~0.998,模型稳定性强,其校正标准差与预测标准差的差值为0.004~0.016,模型预测精度高。
1