textclassify 利用bow(词袋特征)、tfidf、word2vec进行中文文本分类 下图为部分数据集 第一列为分类标签,第二列为文本数据,是关于七类文学作品的简介 requirements gensim sklearn bow accuracy=0.918533,precision=0.918528,recall=0.918533,f1=0.918515 tfidf accuracy = 0.931081, precision = 0.931091, recall = 0.931081, f1 = 0.931071 word2vec accuracy = 0.573359, precision = 0.565731, recall = 0.573359, f1 = 0.567236
2021-11-30 19:03:42 8KB Python
1
word2vec 中的数学原理详解 好资源要分享 ~
2021-11-30 17:30:29 6.16MB NLp
1
使用gensim对维基百科作为预训练语料(约1.6G语料),生成词汇量约13000个词汇,维度为300,文件大小为45.6MB。使用方法,参考博客:https://blog.csdn.net/qq_36426650/article/details/87738919
2021-11-30 14:55:25 32.97MB NLP word2vec中文词向量 自然语言处理
1
利用Word2Vec和Pagerank算法的关键词提取方法 分布语义的最常见表示形式是一维表示,其中维数等于词汇表的基数。 此向量空间表示的元素由0和1组成。 但是,这种表示有一些缺点。 例如,在这些表示中,很难对单词相似度进行推论。 由于尺寸高,它们也可能导致过拟合。 而且,它在计算上是昂贵的。 单词嵌入旨在捕获词汇表项之间的归因相似之处。 在相似的上下文中出现的单词在投影向量空间中应该彼此靠近。 这意味着矢量空间中的单词分组必须共享相同的语义属性。 在单词嵌入中,潜在语义分析(LSA)使用计数基维减少方法。 创建Word2Vec作为替代。 它的低维度可以帮助降低计算复杂度。 与分布语义方法相比,它也减少了过拟合。 Word2Vec还可以检测单词之间的类比。 我们的模型采用向量空间中单词的Word2Vec表示形式。 在构建Word2Vec模型时,我们要确定单词计数的阈值,因为在大型语
2021-11-29 14:22:20 4KB Python
1
中文分词获取和Word2Vec模型构建.zip
2021-11-25 20:06:19 464.92MB NLP 中文分类
1
graph2vec:使用word2vec算法的graph2vec算法的简单,简单的实现
2021-11-22 23:38:51 25KB C++
1
word2vec-pytorch 该存储库显示了一个称为Word2Vec算法的CBOW和Skip-gram(负采样版本)示例。
2021-11-18 18:56:21 124KB JupyterNotebook
1
连续词袋(CBOW) NLP中使用深度学习经常使用连续词袋(CBOW)和Skip-gram模型。 给定目标词之前和之后的上下文词范围N,它会尝试预测当前(目标)词。 此代码是PyTorch教程在以下链接的Word Embeddings的“获取密集的词嵌入”中给出的练习的实现: https://pytorch.org/tutorials/beginner/nlp/word_embeddings_tutorial.html#getting-dense-word-embeddings 参考 有关单词嵌入的进一步研究,请阅读以下文章: 向量空间中单词表示的有效估计 word2vec解释:推导Mikolov等人的负采样词嵌入方法 单词和短语的分布式表示形式及其组成
2021-11-18 16:18:13 2KB Python
1
wiki百科训练word2dev模型可以使用的语料库,wiki语料库zhwiki-latest-pages-articles.xml,希望可以有所帮助,该文件是训练好的
2021-11-18 16:12:26 43.2MB 语料库
1
关于在英语语料库上进行词嵌入训练的研究很多。 该工具包通过在德语语料库上应用深度学习,以训练和评估德语模型。 有关项目,评估结果和的概述可在或直接在此存储库中找到。 该项目是根据发布的。 开始吧 确保已安装Python 3以及以下库: pip install gensim nltk matplotlib numpy scipy scikit-learn 现在,您可以下载并在您的Shell中执行它,以自动下载此工具包和相应的语料库文件并进行模型训练和评估。 请注意,这可能需要大量时间! 您也可以克隆此存储库,并使用我已经进行评估和可视化。 如果您只想查看不同Python脚本的工作方式,
1