keyword_extraction:使用Word2Vec提取关键字-源码

上传者: 42104366 | 上传时间: 2021-11-29 14:22:20 | 文件大小: 4KB | 文件类型: -
利用Word2Vec和Pagerank算法的关键词提取方法 分布语义的最常见表示形式是一维表示,其中维数等于词汇表的基数。 此向量空间表示的元素由0和1组成。 但是,这种表示有一些缺点。 例如,在这些表示中,很难对单词相似度进行推论。 由于尺寸高,它们也可能导致过拟合。 而且,它在计算上是昂贵的。 单词嵌入旨在捕获词汇表项之间的归因相似之处。 在相似的上下文中出现的单词在投影向量空间中应该彼此靠近。 这意味着矢量空间中的单词分组必须共享相同的语义属性。 在单词嵌入中,潜在语义分析(LSA)使用计数基维减少方法。 创建Word2Vec作为替代。 它的低维度可以帮助降低计算复杂度。 与分布语义方法相比,它也减少了过拟合。 Word2Vec还可以检测单词之间的类比。 我们的模型采用向量空间中单词的Word2Vec表示形式。 在构建Word2Vec模型时,我们要确定单词计数的阈值,因为在大型语

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明