Community Core Vision, CCV for short (aka tbeta), is a open source/cross-platform solution for computer vision and machine sensing. It takes an video input stream and outputs tracking data (e.g. coordinates and blob size) and events (e.g. finger down, moved and released) that are used in building multi-touch applications. CCV can interface with various web cameras and video devices as well as connect to various TUIO/OSC/XML enabled applications and supports many multi-touch lighting techniques including: FTIR, DI, DSI, and LLP with expansion planned for the future vision applications (custom modules/filters).
2023-02-22 14:00:26 12.09MB ccv 1.2
1
背景分离matlab代码计算机视觉与模式识别 内容 1.关于此存储库 该存储库是基本计算机视觉和图像处理技术的集合。 算法的实现在MATLAB中。 2.直方图均衡 图像处理技术。 查看更多详细信息。 代码 3.对比度拉伸 图像处理技术。 查看更多详细信息。 代码 4.边缘检测 图像处理技术。 查看更多详细信息。 代码 5.去除背景 图像处理技术。 查看更多详细信息。 代码 6.背景前景分离 前景检测和背景减法是计算机视觉和图像处理中的主要任务。 查看更多详细信息。 代码
2023-02-20 15:26:44 10.48MB 系统开源
1
Welcome to the Practitioner Bundle of Deep Learning for Computer Vision with Python! This volume is meant to be the next logical step in your deep learning for computer vision education after completing the Starter Bundle. At this point, you should have a strong understanding of the fundamentals of parameterized learning, neural net works, and Convolutional Neural Networks (CNNs). You should also feel relatively comfortable using the Keras library and the Python programming language to train your own custom deep learning networks. The purpose of the Practitioner Bundle is to build on your knowledge gained from the Starter Bundle and introduce more advanced algorithms, concepts, and tricks of the trade — these tech- niques will be covered in three distinct parts of the book. The first part will focus on methods that are used to boost your classification accuracy in one way or another. One way to increase your classification accuracy is to apply transfer learning methods such as fine-tuning or treating your network as a feature extractor. We’ll also explore ensemble methods (i.e., training multiple networks and combining the results) and how these methods can give you a nice classification boost with little extra effort. Regularization methods such as data augmentation are used to generate additional training data – in nearly all situations, data augmentation improves your model’s ability to generalize. More advanced optimization algorithms such as Adam [1], RMSprop [2], and others can also be used on some datasets to help you obtain lower loss. After we review these techniques, we’ll look at the optimal pathway to apply these methods to ensure you obtain the maximum amount of benefit with the least amount of effort.
2023-02-14 22:12:08 60.62MB deep learning
1
matlab匹配滤波代码basic_vision_corner_matching matlab for Harris角点匹配示例代码。 包括一个中值流过滤器,用于过滤掉错误的匹配项:Delaunay triangulaiton用于查找最近的邻居,任何匹配项都需要2个与其相似的支持匹配项才能被认为是一个很好的匹配项。 比RANSAC更有效。
2023-02-13 11:29:51 356KB 系统开源
1
计算机视觉 算法与应用,这是一本经典的计算机视觉的教程,由Richard Szeliski撰写,本书清晰无无污染,适合打印(ps 这本书是英文版的)
2023-02-09 15:53:58 22.09MB 计算机视觉 经典教材
1
Silicon Laboratories USB Programmer/ISP driver for Keil uVision IDE. Tested on uVision 3.xx & 4.xx for C51 platform.
2023-01-25 12:46:57 3.85MB Silabs Keil uVision
1
Multiple View Geometry in Computer Vision( 计算机视觉中的多视图几何 )中英文文档各一份 hartley 大神之作
2023-01-11 11:19:17 52.49MB 计算机视觉; 多视几何
1
CompreFace-Exadel的开源人脸识别系统 CompreFace是一项免费的人脸识别服务,可以轻松集成到没有事先机器学习技能的任何系统。 ··· 面对面 总览 CompreFace是用于人脸识别的基于docker的应用程序,可以集成为独立服务器或部署在云中,并且无需机器学习专家即可进行设置和使用。 我们的方法基于深度神经网络,它是最流行的面部识别方法之一,并提供了便捷的REST API,用于Face Collection训练和面部识别。 我们还提供了一个角色系统,您可以使用它轻松控制谁可以访问Face Collection。 每个用户都可以创建自己的模型,并在输入数据的不同子集上对
2023-01-03 19:48:09 124.28MB docker computer-vision docker-compose rest-api
1
vision all resource
2023-01-03 15:26:21 113.89MB 0
1
图片字幕 介绍 建立一个模型以从图像生成字幕。 给定图像后,模型可以用英语描述图像中的内容。 为了实现这一点,我们的模型由一个编码器(一个CNN)和一个解码器(一个RNN)组成。 为CNN编码器提供了用于分类任务的图像,其输出被馈送到RNN解码器,后者输出英语句子。 该模型及其超参数的调整基于论文和。 我们使用微软Çommon在CO NTEXT(MS COCO)O bjects为这个项目。 它是用于场景理解的大规模数据集。 该数据集通常用于训练和基准化对象检测,分段和字幕算法。 有关下载数据的说明,请参见下面的“数据”部分。 代码 该代码可以分为两类: 笔记本-该项目的主要代码由一系列Jupyter笔记本构成: 0_Dataset.ipynb介绍数据集并绘制一些样本图像。 1_Preliminaries.ipynb加载和预处理数据并使用模型进行实验。 2_Training.ip
2023-01-02 13:00:14 2.09MB nlp computer-vision cnn pytorch
1