Adrian Rosebrock 的Deep Learning for Computer Vision with Python 1,2,3都在里面了。我自己没看过,但是我在看他opencv教程,倒是蛮不错的。
2023-03-30 20:31:13 60.5MB deeplearning opencv CV
1
令人敬畏的图像着色 基于深度学习的图像着色论文和相应的源代码/演示程序的集合,包括自动和用户指导(即与用户交互)的着色,以及视频的着色。 随意创建PR或问题。 (首选“拉式请求”) 大纲 1.自动图像着色 纸 来源 代码/项目链接 ICCV 2015 深着色 ICCV 2015 学习表示形式以实现自动着色 ECCV 2016 [项目] [代码] 彩色图像着色 ECCV 2016 [项目] [代码] 让有颜色!:全局和局部图像先验的端到端联合学习,以实现同时分类的自动图像着色 SIGGRAPH 2016 [项目] [代码] 通过生成对抗网络进行无监督的多样化着色 ECML-PKDD 2017 [代码] 学习多样的图像着色 CVPR 2017 [代码] 多种着色的结构一致性和可控性 ECCV 2018 使用有限的数据进行着色:通过内存增强网络进行少量着色 CVP
1
无人驾驶汽车的动手视觉和行为 这是Packt发布的《无人驾驶的代码库。 使用Python 3和OpenCV 4探索视觉感知,车道检测和对象分类 这本书是关于什么的? 这本书将使您对推动自动驾驶汽车革命的技术有深刻的了解。 首先,您所需要的只是计算机视觉和Python的基础知识。 本书涵盖以下激动人心的功能: 了解如何执行相机校准 熟悉使用OpenCV在自动驾驶汽车中进行车道检测的工作原理 通过在视频游戏模拟器中自动驾驶来探索行为克隆 掌握使用激光雷达的技巧 探索如何配置自动驾驶仪的控件 使用对象检测和语义分割来定位车道,汽车和行人 编写PID控制器以控制在模拟器中运行的自动驾驶汽车 如果您觉得这本书适合您,请立即获取! 说明和导航 所有代码都组织在文件夹中。 例如,Chapter02。 该代码将如下所示: img_threshold = np.zeros_like(chan
2023-03-27 16:36:32 825.36MB JupyterNotebook
1
3D 视觉工具包,试用版,有时间限制,可以了解基本的方法,思路
2023-03-23 14:52:10 59.01MB 3D视觉 LABVIEW
1
多摄像机人员跟踪和重新识别(使用视频) 用于“检测/跟踪”和“重新识别”不同摄像机/视频中的个人的简单模型。 介绍 该项目旨在跟踪不同角度的视频中的人。 用于完成此任务的框架分别依靠MOT和ReID来跟踪和重新标识人类的ID。 可以使用YOLO_v3或YOLO_v4来完成跟踪,并且ReID依赖于KaiyangZhou的Torchreid库。 安装 如果您的计算机上未安装 ,请下载 克隆存储库 git clone https : // github . com / samihormi / Multi - Camera - Person - Tracking - and - Re - Identification 创建项目环境 cd Multi - Camera - Person - Tracking - and - Re - Identification conda create
2023-03-22 15:57:54 50.11MB tracking video computer-vision tensorflow
1
补丁VQ Patch-VQ:“修补”视频质量问题 演示版 请按照 测试在LSVQ数据库上预训练的Patch VQ模型。 请按照在您的数据库上测试我们的Patch VQ模型。 下载LSVQ数据库 描述 对于社交和流媒体应用程序,无参考(NR)感知视频质量评估(VQA)是一个复杂,尚未解决的重要问题。 需要有效,准确的视频质量预测器来监视和指导数十亿个用户共享内容(通常是不完美的内容)的处理。 不幸的是,当前的NR模型在真实的,“野生的” UGC视频数据上的预测能力受到限制。 为了推进这一问题的发展,我们创建了迄今为止最大的主观视频质量数据集,其中包含39,000个真实世界的失真视频和117,000个时空本地化的视频补丁(“ v-patches”),以及5.5M人类的感知质量注释。 使用此工具,我们创建了两个独特的NR-VQA模型:(a)基于本地到全球区域的NR VQA体系结构(称为PVQ)
1
循环GAN | 火炬实现,用于在没有输入输出对的情况下学习图像到图像的转换( ),例如: 新增内容:请检查(CUT),这是我们新的非成对图像到图像翻译模型,可实现快速且高效存储的培训。 *, *,, 加州大学伯克利分校伯克利分校AI研究实验室在ICCV 2017中。(*等额捐款) 该软件包包括CycleGAN, 以及其他方法,例如 / 和Apple的论文。 该代码被写了和。 更新:请检查CycleGAN和pix2pix的实现。 PyTorch版本正在积极开发中,其结果可与该Torch版本相媲美或更好。 其他实现: (由Harry Yang), (由Archit Rathore撰写
1
面部防喷雾剂 使用CASIA-SURF CeFA数据集, 和脸反欺骗任务解决方案。 模型 M,参数 计算复杂度,MFLOP 红绿蓝 深度 红外 损失函数 最佳LR 最低ACER(CASIA-SURF值) 快照 羽毛网 0.35 79.99 :check_mark: :cross_mark: :cross_mark: 交叉熵 3e-6 0.0242 羽毛网 0.35 79.99 :check_mark: :check_mark: :cross_mark: 交叉熵 3e-6 0.0174 羽毛网 0.35 79.99 :check_mark: :check_mark: :check_mark: 交叉熵 1e-7 0.0397 下载 羽毛网 0.35 79.99 :check_mark: :cross_mark: :cross_mark: 失焦 3e-6 0.0066 下载 MobileLiteNet 0.57 270.91 :check_mark: :cross_mark: :cross_m
2023-03-11 16:08:52 22.44MB computer-vision deep-learning pytorch anti-spoofing
1
KittiBox KittiBox是用于在Kitti上训练模型FastBox的脚本的集合。 有关Fastbox的详细说明,请参见我们的。 FastBox旨在以很高的推理速度存档高检测性能。 在Kitti数据上,该模型的吞吐量为28 fps(36毫秒),是FasterRCNN的两倍以上。 尽管FastBox速度惊人,但其性能却明显优于Faster-RCNN。 任务 中等 简单 硬 速度(毫秒) 速度(fps) 快速盒 86.45% 92.80% 67.59% 35.75毫秒 27.97 更快的RCNN 78.42% 91.62% 66.85% 78.30毫秒 12.77
2023-03-10 19:58:40 21.33MB computer-vision deep-learning tensorflow detection
1
Mingw编译好的Opencv4.4.0库,可用于VScode和Vitis HLS。
2023-03-10 16:56:59 25.4MB opencv mingw hls vision
1