感化器 受启发。 该宝石可以单独使用,也可以与rails应用集成。 Rails使用说明 使用bundler gem "sentimentalizer"安装gem 运行rails g sentimentalizer 。 这将生成一个带有after_initialize钩子的初始化文件。 基本上是在训练要在应用程序中使用的模型。 每当您启动服务器或运行任何rake命令时,它将运行,希望对此有所投入。 现在,您可以在require "sentimentalizer"之后运行以下命令 Sentimentalizer . analyze ( 'message or tweet or status
2021-11-22 12:11:39 2.99MB ruby rails machine-learning sentiment-analysis
1
A Cognition Based Attention Model for Sentiment Analysis.zip
2021-11-22 09:08:47 175KB NLP eye-tracking
1
bert_sentiment_analysis:使用BERT进行深度学习的情感分析
2021-11-20 22:56:53 3.48MB JupyterNotebook
1
CCF-BDCI-Sentiment-Analysis-Baseline 1.从该中改写的 2.该模型将文本截成k段,分别输入语言模型,然后顶层用GRU拼接起来。好处在于设置小的max_length和更大的k来降低显存占用,因为显存占用是关于长度平方级增长的,而关于k是线性增长的 模型 线上F1 Bert-base 80.3 Bert-wwm-ext 80.5 XLNet-base 79.25 XLNet-mid 79.6 XLNet-large -- Roberta-mid 80.5 Roberta-large (max_seq_length=512, split_num=1) 81.25 注: 1)实际长度 = max_seq_length * split_num 2)实际batch size 大小= per_gpu_train_batch_size * numbers of gpu
2021-11-17 19:34:01 1.03MB Python
1
Kaggle竞赛(推文情感提取) 从推文中提取情感标签的支持短语 方法 训练RoBERTA模型进行预测 使用词干生成更多样本并训练RoBERTA模型 (可根据要求提供预训练的RoBERTA模型和模型)
2021-11-17 10:25:02 3.66MB JupyterNotebook
1
一、cnsenti 中文情感分析库(Chinese Sentiment))可对文本进行情绪分析、正负情感分析。 https://github.com/thunderhit/cnsenti https://pypi.org/project/cnsenti/ 特性 情感分析默认使用的知网Hownet 情感分析可支持导入自定义txt情感词典(pos和neg) 情绪分析使用大连理工大学情感本体库,可以计算文本中的七大情绪词分布 注意 代码中情绪分析使用的大连理工大学情感本体库,如发表论文,请注意用户许可协议 1、该情感词汇本体由大连理工大学信息检索研究室独立整理标注完成,可供国内外大学、科研院所及个人用于学术研究目的。 2、如任何单位和个人需将其用于商业目的,请发送邮件至 进行协商。 3、使用过程中如发现该资源中有任何错误或不妥之处,欢迎用户将您的宝贵意见发送至邮箱 ,我们 将以最快的速度
2021-11-17 09:35:26 832KB Python
1
深度学习情感分析 多模态情感分析的深度学习
2021-11-14 22:45:06 6.35MB
1
股票评估工具 此回购包含一组工具,投资者可以使用这些工具来更好地了解他/她感兴趣的股票。它不建议买卖股票,而是有助于形成对股票的有根据的猜测。潜在的未来股价走势,并因此对要分析的股票做出买/卖/持有决定。 这里包括的工具不是唯一可以使用的工具。 之所以将它们包括在内,是因为我相信没有任何一种工具或模型可以充分理解导致股价波动的所有因素。 此仓库中包含的工具集可分为: 工具-EMA信号,布林带。 -通过YahoofFinancials和YFinance API使用财务数据。 -ARIMA随机森林。 -随机森林。 模型-LSTM。 模型-蒙特卡洛模拟。 -NLP情感分析。 模型-基于Markowitz的Efficient Frontier和CVaR。 我相信,通过将上述分析工具一起使用,就可以对未来的股价做出正确的预测。 如何使用储存库 没有预定义的方式来使用存储库中包
1
使用PyTorch进行情感分析 存储库将引导您完成构建完整的情感分析模型的过程,该模型将能够预测给定评论的极性(无论表达的观点是肯定的还是负面的)。 要在其上训练模型的数据集是流行的IMDb电影评论数据集。 目录 第一个笔记本涵盖了从原始数据集中加载数据,特征提取和分析,文本预处理以及训练/验证/测试集准备的过程。 第二篇教程包含有关如何设置词汇对象的说明,该对象将负责以下任务: 创建数据集的词汇表。 根据稀有词出现和句子长度过滤数据集。 将单词映射到其数字表示形式(word2index)和反向(index2word)。 启用预训练词向量的使用。 此外,我们将构建BatchItera
1
CS291K 使用CNN-LSTM组合神经网络模型对Twitter数据进行情感分析 论文: : 博客文章: : 动机 该项目旨在扩展我们以前使用简单的前馈神经网络(位于此处: & )进行的情绪分析工作。 相反,我们希望尝试使用Tensorflow构建组合的CNN-LSTM神经网络模型,以对Twitter数据进行情感分析。 依存关系 sudo -H pip install -r requirements.txt 运行代码 在train.py上,更改变量MODEL_TO_RUN = {0或1} 0 = CNN-LSTM 1 = LSTM-CNN 随时更改其他变量(batch_
1