MATLAB Arduino官方支持包,通过官方离线下载得到的安装包,可以离线安装 MATLAB Support Package for Arduino Hardware,官方下载。
2021-12-28 09:03:10 232.41MB matlab arduino hardware
1
fpga-ml-促进剂 该存储库托管用于卷积神经网络的基于FPGA的加速器的代码,有关整个设计和设计原理的非常详细的说明, 。 该存储库以前位于
2021-12-27 19:32:07 15KB asic fpga hardware vhdl
1
硬件和固件安全指南 目录 1. 2. 2.1 2.1.1 2.1.2 2.1.3 2.1.4(已更新!) 2.1.5 2.2 2.2.1 2.2.2 2.2.3 2.3 2.3.1 2.3.2崩溃 2.3.3预示 2.3.4 BranchScope 2.3.5 TLBleed 2.3.6 PortSmash 2.3.7 NetSpectre 2.3.8微体系结构数据采样(MDS) 2.3.9 CacheOut (新!) 2.3.10走一条(新!) 2.3.11负载值注入(新!) 3.固件和微码漏洞 3.1 LoJax 3.2 Ryzenfall,Chimera,Fallout和Masterkey 3.3 Microsoft安全启动旁路(新!) 4.引导配置 4.1 UEFI强化 4.2 UEFI安全启动自定义(已更新!) 5.硬件升级指南(新!) 6.执照 7.
2021-12-24 11:12:18 84KB audit vulnerability cve nessus
1
整理过的PDF格式的智能手环教程,便于相关领域的工程师学习借鉴。
2021-12-23 13:48:04 5.89MB android smart hardware software
1
IEEE Std 1364-2005-IEEE Standard for Verilog Hardware Description Language。IEEE标准Verilog HDL语言参考手册(英文版)
2021-12-20 17:37:38 6.16MB IEEE标准 Verilog
1
Camera hareware&camera; tuning introduction.pptx, 只是一个相信讲解手机上Camera 硬件和软件的文档。内容详细,紧跟最新科技发展。
2021-12-17 15:27:06 17.81MB camera introduction hardware mobile
1
MC9S12DP256/DG128 Hardware & Basic System Design.pdf
2021-12-15 19:56:07 1.65MB MC9S12DP256 Freescale
1
视觉惯性同步硬件 作者: ( ),( ) 1.说明 该项目旨在对摄像机和IMU进行硬件同步,以便它们都使用相同(毫秒级)的时基。 我们已经在Ubuntu16.04(ROS Kinetic)中测试了代码。 Arduino将为每个IMU测量(200 Hz)计算精确的(微秒)时间戳。 在某些时间戳(20 Hz)下,它将触发相机(通过触发线)以捕获新图像。 时间戳记和triggerCounter数据将被发送到PC(IMU节点)。 IMU节点将从Arduino接收IMU数据,并通过新的ROS TimeReference消息(主题/ imu / trigger_time)发布时间数据。 相机节点将订阅此时间数据,以为每个相机图像重建精确的时间。 因此,消息流将如下所示: IMU –> Arduino –> PC (ROS IMU node) –> ROS camera node 2.要求 2
1
High computational complexity hinders the widespread usage of Convolutional Neural Networks (CNNs), especially in mobile devices. Hardware accelerators are arguably the most promising approach for reducing both execution time and power consumption. One of the most important steps in accelerator development is hardware-oriented model approximation. In this paper we present Ristretto, a model approximation framework that analyzes a given CNN with respect to numerical resolution used in representing weights and outputs of convolutional and fully connected layers. Ristretto can condense models by using fixed point arithmetic and representation instead of floating point. Moreover, Ristretto fine-tunes the resulting fixed point network. Given a maximum error tolerance of 1%, Ristretto can successfully condense CaffeNet and SqueezeNet to 8-bit. The code for Ristretto is available. Comments: 8 pages, 4 figures, Accepted as a workshop contribution at ICLR 2016. Updated comparison to other works Subjects: Computer Vision and Pattern Recognition (cs.CV)
1