某监局补环境资源,用的代理的方法补的环境,内包含js 和 案例文件,之前的版本不保证有限,仅仅作为参考
2025-03-31 18:29:05 100KB javascript node
1
随着人工智能(AI)技术的蓬勃发展,DeepSeek作为一家领先的AI公司,也提供了丰富的API接口供开发者进行二次开发和集成。在本Demo中,提供如何使用 C# 语言实现调用 DeepSeek API,本Demo使用 HttpClient 实现的基础方案(HttpClient 需要.NET 4.5以上以上,所以推荐VS2019)。 本Demo适合初步接触DeepSeek的小白发开者。需要注意的是,测试本Demo前,需要在深度探索公司主页,申请一个key,并需要充值10RMB,因为账户余额为0,调用API时,会报402的错误(余额不足)。
2025-03-30 11:47:18 330KB
1
随着信息化社会的快速发展,大数据与先进人工智能(AI)技术的结合应用日益广泛,尤其在电力系统领域。电力系统作为现代社会的基础设施之一,其稳定运行直接关系到国民经济的发展和人民生活的质量。因此,运用大数据和先进AI方法来提高电力系统的可靠性、安全性和经济性,已成为当下技术革新的一个重要方向。 在电力系统应用中,大数据分析的引入能够帮助管理者更加精准地预测电力需求和生成调度计划。通过实时收集和分析各种电力设备运行数据、气象数据以及用户负荷数据,结合先进的数据挖掘技术,可以为电力系统的优化运行提供数据支持,比如需求侧管理、电网状态监测和故障预警等。 AI技术,特别是机器学习和深度学习模型,在电力系统中的应用同样令人瞩目。例如,通过神经网络模型可以对电网负荷进行精准预测,对电力设备进行故障诊断,或是对可再生能源的发电量进行预测。这些应用不仅能提升电力系统的运维效率,还能帮助实现智能调度和自愈电网的目标。 大语言模型在电力系统的智能化应用中也展现出巨大的潜力。在电力系统运行中,大量的日志记录、操作手册、技术文档以及用户反馈等文本信息,都可能成为优化电力服务的重要资源。大语言模型可以高效地处理和分析这些文本信息,从而提炼出有价值的知识,辅助决策和优化用户体验。 以ChatGPT等先进的AI语言模型为基础,可以构建电力系统的智能交互平台,实现与用户的自然语言交流,提供问答、故障报修、用电咨询等服务。这不仅能够增强用户的使用体验,同时通过用户的反馈信息进一步优化电网服务。 此外,Deepseek等深度学习模型在图像识别上的应用,可对电力系统中的关键设备进行视觉监测,通过实时分析设备的图片或视频资料,及时发现设备异常或潜在的安全隐患,从而提高电力系统的安全运行水平。 结合以上技术,电力系统的运行和管理将变得更加智能化和精细化。然而,要实现这一目标,数据质量和数据安全是需要特别关注的问题。数据质量的高低直接影响到大数据分析和AI模型预测的准确性,而数据安全则关系到整个电力系统的稳定和用户隐私保护。 大数据和先进AI方法在电力系统中的应用能够带来诸多益处,从提高供电效率到增强系统可靠性,从提升用户体验到保障数据安全。随着这些技术的不断成熟和发展,未来电力系统将会更加智能化,为社会经济发展提供更加坚实的能源支撑。
2025-03-30 08:52:36 24.96MB 人工智能 AI学习
1
基于Lyapunov模型预测控制方法的AUV路径跟踪与fossen动力学模型复现分析:与优化算法和反步法对比研究,基于Lyapunov模型的MPC方法在AUV路径跟踪问题中的应用与对比研究,5-顶刊复现,基于Lyapunov的模型预测控制MPC方法,用于控制水下机器人AUV的路径跟踪问题trajectory tracking 具体的方法和建模过程可以参考文献。 本代码包括水下机器人的fossen动力学模型,matlab的优化算法求解器,还包括非线性反步法backstepping 的对比代码非常划算,两种对比都有。 ,顶刊复现; Lyapunov模型预测控制MPC; 水下机器人AUV路径跟踪; fossen动力学模型; matlab优化算法求解器; 非线性反步法backstepping对比,基于Lyapunov MPC方法的AUV路径跟踪研究
2025-03-30 00:33:50 3.65MB xhtml
1
直齿行星传动系统:平移-扭转耦合非线性动力学的深入探索与参数分析,直齿行星传动系统:平移-扭转耦合非线性动力学的多维分析方法,直齿行星传动平移-扭转耦合非线性动力学考虑了各齿轮副之间的啮合相位,可出相图,频谱图,分岔图,庞加莱映射。 需提供参数 ,核心关键词:直齿行星传动;平移-扭转耦合;非线性动力学;啮合相位;相图;频谱图;分岔图;庞加莱映射;参数。,考虑多体啮合相位影响的直齿行星传动动力学研究 直齿行星传动系统是机械传动领域中常见的传动形式,它具有高效率、大传动比、结构紧凑等优点。在实际应用中,直齿行星传动系统的性能不仅受到机械结构设计的影响,还受到动态工作条件的影响。其中,平移-扭转耦合非线性动力学的研究对于理解和改善直齿行星传动系统的动态性能具有重要意义。 在研究平移-扭转耦合非线性动力学时,考虑齿轮副之间的啮合相位是关键因素之一。啮合相位不仅影响齿轮的传动精度,还会在动态过程中产生复杂的动力学行为,如振动和噪声。通过分析啮合相位,可以揭示齿轮传动过程中的动态特性,如振动模式、动态响应和稳定性能。为了更深入地理解这些动态特性,研究人员通常会借助相图、频谱图、分岔图和庞加莱映射等工具来表征系统的动态行为。 相图能够直观地展示系统随时间变化的状态,通过相图可以观察到系统的稳定性和周期性。频谱图则显示了系统响应的频率成分,对于识别振动源和振动模式具有重要作用。分岔图描述了系统在参数变化时的分岔现象,可以帮助工程师了解系统从稳定到不稳定转变的临界点。庞加莱映射是一种用于分析动态系统周期解的方法,通过映射可以研究系统的周期运动和混沌行为。 在研究中,需要提供一系列参数来描述系统的工作状态,如齿轮的模数、齿数、压力角、齿面硬度、润滑条件等。这些参数共同决定了齿轮传动系统的动力学行为,因此在进行参数分析时,需要综合考虑这些因素的影响。 此外,直齿行星传动系统的非线性动力学特性研究也与系统的多体啮合相位影响紧密相关。在多体动力学中,考虑整个系统的啮合相位对于更准确地模拟和预测传动系统的动态响应至关重要。通过理论分析和实验验证相结合的方法,可以更深入地探索直齿行星传动系统的非线性动力学特性。 直齿行星传动系统的平移-扭转耦合非线性动力学研究是一项复杂而深入的工作,它涉及到齿轮副之间的精确啮合、系统的动态响应分析、以及系统参数对传动性能的影响等多个方面。通过深入探索这些领域,可以为提高直齿行星传动系统的性能提供理论基础和实际指导。
2025-03-29 12:50:33 544KB
1
塔石DTU与阿里云物联网平台连接方法和TOPIC的设置
2025-03-28 11:07:37 47.91MB 阿里云
1
3.6 反馈注意事项 1.Encoder 和 Resolver 一些 Copley 驱动器提供了 Encoder 和 Resolver 两种反馈方式的版本。Encoder 版本支持 数字差分信号或者模拟 sin/cos 信号的编码器,并且此版本的驱动器通常需要 Hall 来整定无 刷电机的相位。Resolver 版本支持独立的,单端的,发射型的 Resolver。 2.双反馈型驱动器 一些 Copley 驱动器可以通过主编码器通道,次编码器通道(multi-mode port),或者两个通 道接收电机,负载,或者两者的位置反馈信号。(一些驱动器可以工作在没有编码器和 Resolver 的模式) 当驱动器被配置成带有 multi-mode port 时,multi-mode port 可以:
2025-03-27 20:55:29 1.43MB copley
1
一、简介 针对滚动轴承存在性能退化渐变故障和突发故障两种模式下的剩余使用寿命(remaining useful life,简称RUL)预测困难的问题,提出一种结合卷积神经网络(convolution neural networks,简称CNN)和长短时记忆(long short term memory,简称 LSTM)神经网络的滚动轴承 RUL预测方法。首先,对滚动轴承原始振动信号作快速傅里 叶变换(fast Fourier transform,简称FFT;其次,将预处理所得到的频域幅值信号进行归一化处理后,将其作为 CNN 的输入,并利用 CNN自适应提取局部内在有用信息,学习并挖掘深层特征,避免传统算法需要专家大量经验 的弊端;然后,再将深层特征输入到 LSTM网络中,构建趋势性量化健康指标,同时确定失效阈值;最后,运用移动平均法进行平滑处理,消除局部振荡,再利用多项式曲线拟合,预测未来失效时刻,实现滚动轴承 RUL 预测。实验结果表明,所提方法构建的趋势性量化健康指标在两种故障模式下都具有良好的单调趋势性,预测结果能够较好地 接近真实寿命值。 ————————————————
2025-03-27 17:08:36 376.1MB Matlab
1
### ARM7启动代码设计方法与流程 #### 一、引言 随着互联网技术的发展和广泛应用,32位微处理器在嵌入式系统中的地位日益重要。ARM(Advanced RISC Machines)处理器作为32位嵌入式RISC微处理器的领头羊,凭借其高性能、低功耗和低成本的特点,广泛应用于移动通信、手持计算、多媒体数字消费等领域。本文将结合AT91M55800A芯片,深入探讨ARM7启动代码的设计方法和流程,并着重介绍地址重映射技术。 #### 二、启动代码概述 启动代码是指在用户应用程序启动前运行的一段特定代码,用于完成系统初始化。这段代码通常用汇编语言编写,因为它需要直接控制处理器内核和硬件控制器。启动代码的主要任务包括但不限于: - **定义入口点**:确定程序的起始地址。 - **设置中断/异常向量**:配置处理器如何响应中断和异常事件。 - **初始化存储系统**(包括地址重映射):配置内存控制器,确保正确的内存访问。 - **初始化堆栈指针寄存器**:设置堆栈的起始位置。 - **初始化中断中用到的变量**:准备中断服务程序所需的全局变量。 - **开启中断**:允许处理器接收中断信号。 - **改变处理器模式和状态**:根据需要调整处理器的操作模式。 - **初始化C程序用到的存储区**:为C语言程序预留内存空间。 - **进入C程序**:跳转到C程序的入口点。 #### 三、AT91M55800A启动代码详解 ##### 3.1 中断向量表 ARM处理器的中断向量表位于0地址开始的连续32字节空间内。当发生中断或异常时,程序计数器(PC)会跳转到对应的地址执行处理代码。AT91M55800A的中断向量表如下所示: - **复位中断**:0x00000000 - **未定义指令中断**:0x00000004 - **软件中断**:0x00000008 - **指令预取异常**:0x0000000C - **数据异常**:0x00000010 - **保留**:0x00000014 - **普通外部中断**:0x00000018 - **外部快速中断**:0x0000001C - **复位入口**:0x00000038 ##### 3.2 初始化存储系统 ARM处理器支持灵活的存储器地址分配机制,其中最关键的部分之一就是地址重映射。在系统启动初期,处理器会从地址0开始执行第一条指令。为了提高中断响应速度,ARM处理器可以通过地址重映射技术将0地址映射到更快的RAM区域,而不是较慢的ROM区域。这一过程通常涉及以下步骤: 1. **配置内存控制器**:确保ROM区域在系统启动初期可以被正确访问。 2. **初始化存储器映射**:将0地址映射到内部RAM区域,以便于快速访问中断向量表。 3. **更新内存映射**:在完成必要的初始化后,将0地址重新映射到RAM区域,从而提高中断处理的速度。 #### 四、地址重映射技术详解 地址重映射是一种重要的技术手段,可以显著提高处理器的中断响应速度。通过将中断向量表所在的0地址映射到RAM区域,可以避免每次中断发生时从ROM区域读取向量表所带来的延迟。实现这一技术的关键在于正确配置处理器的内存控制器,使其能够在系统启动过程中自动完成地址重映射的过程。 #### 五、总结 本文结合AT91M55800A芯片,详细介绍了ARM7启动代码的设计方法和流程,特别是地址重映射技术的应用。通过对这些关键技术的理解和掌握,可以帮助开发者更好地优化嵌入式系统的启动过程,提高系统的整体性能。未来随着嵌入式技术的发展,ARM处理器及其启动代码设计将会扮演更加重要的角色。
2025-03-27 15:04:22 184KB ARM7 启动代码
1
"PMSM永磁同步电机参数辨识仿真研究:定子电阻与dq轴电感、永磁磁链及转动惯量的精确辨识方法",PMSM永磁同步电机参数辨识仿真,适用于表贴式永磁同步电机: 辨识内容:定子电阻,dq轴电感,永磁磁链,转动惯量。 ,PMSM永磁同步电机; 参数辨识仿真; 定子电阻; dq轴电感; 永磁磁链; 转动惯量,"PMSM仿真:参数辨识表贴式永磁同步电机"
2025-03-27 14:52:02 710KB xbox
1