关键词提取是诸多文本挖掘任务的前置任务,其精度直接影响了下游任务的性能。 以中文专利为研究对象,针对专利文本的特点,将关键词提取问题转换成词向量聚类问题,提出了一种基于cw2vec词向量的关键词提取方法,称为KEC。该方法首先利用科技文献的关键词以及开源词典构建领域词典;接着,基于领域词典对专利文本进行预处理获取候选关键词,并采用构建cw2vec模型获得候选关键词的词向量表示;最后,采用聚类算法提取最终的关键词。在真实的专利数据集上进行了实验验证,结果表明KEC在精确率、召回率、综合指标F1等指标项上优于现有的其他基于词聚类的关键词提取方法。
1