题目:交通流量预测模型 背景介绍: 随着城市交通的迅速发展,交通拥堵问题日益严重。准确预测交通流量,可以帮助城市交通管理部门提前采取措施,缓解拥堵状况,提升市民出行效率。本题目旨在建立一个基于历史数据的交通流量预测模型,预测未来一段时间内的交通流量变化。 数据集: 假设你拥有某城市若干主要道路在过去一年的交通流量数据,每条道路的数据包含以下字段: 日期(Date) 时间(Time) 道路编号(Road_ID) 交通流量(Traffic_Volume) 任务: 分析交通流量数据,找出交通流量的时间规律和季节性变化。 设计一个合适的数学模型,对未来一周内每条道路的交通流量进行预测。 使用Python编程实现该模型,并对模型进行验证。
2024-09-25 20:52:58 3KB 数据集 python 编程语言
1
基于扰动观测器的伺服系统摩擦补偿Matlab仿真 1.模型简介 模型为基于扰动观测器的摩擦补偿仿真,仿真基于永磁同步电机速度、电流双闭环控制结构开发,双环均采用PI控制,PI参数已经调好。 仿真中主要包含抗饱和PI控制器、摩擦力模型、扰动观测器、坐标变换、SVPWM、逆变器和永磁同步电机模块等,其中抗饱和PI控制器、摩擦力模型、扰动观测器、坐标变换、SVPWM模块均采用matlab function编程实现,其与C语言编程较为相似,容易进行实物移植。 模型均采用离散化仿真,其效果更接近实际数字控制系统。 2.算法简介 伺服系统中,由于摩擦力的存在,会降低系统响应,因此对摩擦力进行补偿是有必要的。 本仿真通过增加LuGre摩擦力模型,模拟摩擦力对系统性能的影响。 通过扰动观测器对摩擦力进行观测并进行补偿,降低摩擦力对系统性能的影响。 3.仿真效果 ① 加入摩擦力,速度给定为正弦波,模拟速度反复过零的情况。 由于摩擦力的存在,实际速度过零时不能很好的跟踪速度给定信号,如图1所示,0.6s前没有使用扰动观测器,速度过零时,速度跟踪误差很大。 0.6s后,开启扰动观测器,
2024-09-25 16:00:34 90KB matlab
1
从零开始大模型开发与微调基于PyTorch与ChatGLM
2024-09-24 21:55:13 174.56MB pytorch
1
   要用模型预测控制(MPC)做算法的对比实验,发现写纯.m文件有点麻烦,毕竟我不深入原理,于是用MATLAB/SIMULINK自带的MPC controller模块,真是太节省时间了。MPC需4个模块:被控对象的数学模型、预测模型、优化算法以及矫正反馈。使用自带的MPC control模块的话,只需要知道被控对象的数学模型就行了。下面用一个实例进行演示。 matlab程序(含simulink和.m程序),完整运行
2024-09-24 14:35:37 17KB matlab MPC simulink 模型预测
1
**磁滞模型** 磁滞模型是研究磁性材料在磁场作用下磁化过程的重要理论工具。这个模型由Leo M. Presiach于1935年提出,它以数学方式描述了磁性材料的磁化状态如何随着磁场强度的变化而变化,尤其是在反复磁化过程中的非线性行为。在实际应用中,这种模型被广泛用于模拟和预测磁性器件的性能,如磁存储设备、电磁铁、磁传感器等。 磁滞回线是磁滞现象的基本表现,它是磁化强度(M)与磁场强度(H)的关系曲线。在增加磁场时,材料会被磁化,然后在减少磁场时,材料不会完全回到初始状态,形成一个闭合的回线,这就是磁滞回线。Presiach模型通过一系列的微观磁化状态来描述这种现象,每个状态都有其对应的磁场强度和磁化强度。 **Presiach模型的原理** Presiach模型的核心思想是将磁化过程视为无数个微小磁矩的集合。每个微小磁矩都有一个临界磁场值,称为磁化阈值。当磁场强度超过这个阈值时,该磁矩会翻转。模型通过一个二维平面表示,即磁场强度H作为X轴,磁化强度M作为Y轴,形成了所谓的“ Preisach平面”。 在该平面上,每个微小磁矩对应一个单位面积。随着磁场强度的变化,这些面积的贡献共同决定了总的磁化强度。当磁场增加时,更多的磁矩翻转,使得磁化强度增加;反之,当磁场减小时,部分磁矩会反转回来,导致磁化强度下降。这种动态过程形成了复杂的磁滞回线。 **Matlab实现** `preisach-model-matlab-code.m` 文件很可能包含了用Matlab编程语言实现的Presiach模型算法。Matlab是一种强大的数值计算和数据可视化工具,非常适合处理这种涉及大量计算的问题。该代码可能包括以下几个关键步骤: 1. **参数设置**:定义微观磁化状态的分布,包括磁化阈值和相应的权重。 2. **磁场循环**:模拟磁场强度从负值到正值再到负值的循环变化。 3. **磁化状态更新**:根据当前磁场强度,计算哪些磁矩会翻转,并更新总磁化强度。 4. **结果绘制**:绘制出磁滞回线,展示磁化强度与磁场强度的关系。 理解并掌握Presiach磁滞模型的Matlab实现,可以帮助研究人员更好地分析和预测磁性材料的行为,优化设计磁性器件,并为新材料的研发提供理论支持。在实际应用中,该模型还可以与其他磁学模型结合,如Jiles-Atherton模型,以提高预测精度。同时,通过调整模型参数,可以适应不同类型的磁性材料,从而增强模型的普适性。
2024-09-23 09:23:00 758B
1
一比一的SUBOFF模型STEP格式,可以用于starccm、open foam fluent等流体仿真以及教学示例。
2024-09-22 13:11:47 1.04MB
1
NL-LinkNet与D-LinkNet是两种深度学习网络架构,专门用于图像分割任务,特别是针对卫星道路图像的分割。这两个模型是LinkNet的扩展版本,LinkNet本身是基于卷积神经网络(CNN)的轻量级网络,设计用于解决语义分割问题,尤其是在资源有限的设备上。 NL-LinkNet(Nested LinkNet)引入了嵌套结构,通过在LinkNet的基础架构中增加层次深度,提高了模型的表达能力,能够更精确地识别和分割图像中的复杂特征。这种嵌套设计使得模型能够在保持计算效率的同时,提升分割精度。 D-LinkNet(Depthwise-LinkNet)则是在LinkNet基础上引入了深度可分离卷积(Depthwise Separable Convolution)。这种卷积方式将传统的卷积操作分解为深度卷积和逐点卷积两步,大大减少了计算量,同时保持了模型的性能。D-LinkNet因此在计算效率和性能之间找到了更好的平衡。 在提供的压缩包文件中,我们看到以下几个关键文件: 1. `README.md`:这是项目或库的说明文档,通常包含使用指南、安装步骤、模型细节等信息。 2. `data.py`:处理数据集的脚本,可能包括数据加载、预处理、划分训练集和验证集等功能。 3. `eval.py`:评估模型性能的脚本,它会运行模型对测试集进行预测,并计算如IoU(Intersection over Union)等指标。 4. `segment.py`:可能用于图像分割的主程序,其中包含了模型的前向传播和后处理步骤。 5. `framework.py`:定义了模型框架,可能包括网络架构、损失函数和优化器等。 6. `train.py`:模型训练的脚本,负责设置超参数、初始化模型、训练循环等。 7. `loss.py`:定义了损失函数,如交叉熵损失、 Dice 损失等,这些是衡量模型预测与真实标签差异的关键。 8. `requirements.txt`:列出项目所需的Python库及其版本,确保环境一致性。 9. `networks`:可能包含NL-LinkNet和D-LinkNet的具体实现代码。 10. `weights`:预训练模型的权重文件,可以直接加载到模型中,避免从头开始训练。 这些文件的组合提供了一个完整的深度学习模型应用环境,用户可以使用这些代码进行模型的加载、训练、评估和预测。由于没有提供具体的数据集,用户需要自行准备卫星道路图像数据集才能运行这个模型。对于遥感图像分割,通常需要对图像进行预处理,如归一化、裁剪、重采样等,以适应模型的输入要求。 NL-LinkNet和D-LinkNet是针对遥感图像道路分割的高效模型,结合提供的代码和权重,研究者或开发者可以快速进行模型的验证和应用,进一步改进或扩展模型以适应不同的遥感图像分析需求。
2024-09-21 22:40:57 188.96MB 网络 网络
1
智能电网技术是现代电力系统发展的核心方向之一,它涉及将先进的信息技术、通信技术、控制技术和电力技术融合到传统的电网中,以实现电网的智能化管理和运行。智能电网的目标是提升电网的可靠性、安全性、经济性和环境友好性,特别是在多种能源发电、调度以及高效利用方面发挥着越来越重要的作用。 1. 多种能源发电的多目标优化调度模型 在智能电网中,多种能源发电的多目标优化调度模型是核心内容。所谓多目标优化,指的是在考虑多个目标函数的同时,寻求这些目标之间的最优平衡。在电力系统中,这些目标可能包括但不限于最小化火电机组的煤耗、水电机组的用水量、电网的网损以及降低风电场的危险等级等。通过构建这种模型,可以全面评估发电资源的使用效率和系统的经济性,从而在保证电力供应可靠性的基础上,实现能源的高效利用和环境保护。 2. 仿水循环粒子群算法 为了有效解决多目标优化调度模型的复杂性和求解难度,本文提出了一种仿水循环粒子群算法。这是一种启发式算法,借鉴了自然界水循环机制,其目的是为了解决传统随机算法在面对复杂优化问题时耗时长和难以收敛到全局最优解的问题。仿水循环粒子群算法利用了水循环过程中的一些现象,如蒸发、降水、径流等,将这些现象转化为算法中的粒子运动规则,通过模仿水循环的方式迭代搜索最优解。 3. 风电机组出力的不确定模型 在智能电网的多种能源发电中,风能作为一种重要的可再生能源,其发电量受到风速随机性的影响,导致风电机组的出力具有不确定性。因此,本文采用了随机机会约束规划理论,建立了一个能够描述风速随机分布特性的风电机组出力不确定模型。该模型通过机会约束规划将不确定性转化为确定性等价形式,使得调度模型能够更加准确地反映实际情况。 4. 案例分析与验证 为验证所提出的多目标优化调度模型和仿水循环粒子群算法的实用性与有效性,研究以一个包含10个燃煤电厂、8个水电站和2个风电场的区域电力系统作为实例进行分析计算。通过计算结果,可以分析模型对电网的适应性,并评估仿水循环粒子群算法在求解多目标优化问题中的可行性与效率。 关键词解释: - 智能电网:指采用先进的信息通信技术与传统电网相结合,实现电网的智能化管理,包括发电、输电、变电、配电、用电和调度等环节。 - 多种能源发电:指在一个电力系统中同时或相继使用不同类型的发电方式,包括火电、水电、风电等。 - 多目标优化调度:是针对电力系统中的多个相互冲突的优化目标,同时进行优化以寻求各个目标之间的最佳平衡点。 - 仿水循环粒子群算法:一种基于自然水循环现象的新型优化算法,用于解决多目标优化问题。 本文介绍的智能电网多种能源发电多目标优化调度模型及其仿水循环粒子群算法,不仅在理论上构建了一个高效、节能、环保的电力调度模型,而且提出了一种高效的算法来解决实际问题,具有很高的实用价值和研究意义。随着智能电网技术的不断发展和优化算法的不断创新,这些研究成果将对提升智能电网的性能和推动可再生能源的利用起到积极的作用。
2024-09-21 13:01:54 533KB 首发论文
1
基于CNN-LSTM模型的网络入侵检测方法,使用的是UNSW-NB15数据集,代码包含实验预处理,混淆矩阵输出,使用分成K折交叉验证,实验采用多分类,取得良好的效果。 Loss: 0.05813377723097801 Accuracy: 0.9769517183303833 Precision: 0.9889464676380157 Recall: 0.9685648381710052
2024-09-20 20:56:16 397KB lstm jupyter
1
两相流模型-fluent案例共101mb,包括case ,mesh ,data,详情请看内容,运行时确保路径中无中文,使用最新版ansys运行。
2024-09-20 14:36:33 49.86MB fluent
1