使用OpenGL库编写,实验得分100分,质量高,包含工程文件和实验报告! 实验要求: 1.设计并实现一个简单的三维图形绘制及编辑软件,主要具备如下功能 (1)点击菜单项或者工具条按钮,在屏幕上绘制一些基本的三维图形,主要包括:球体,柱体,平面,六面体等,构建简单的三维场景 (2)点击鼠标左键选择所绘制的实体,通过鼠标移动及鼠标中间滚轮实现选中实体在三维空间中的移动 (3)点击菜单项或者工具条按钮,通过鼠标选中实体,双击鼠标左键弹出对话框,修改鼠标选中实体在三维空间中的位置坐标,绕 X,Y,Z 轴的旋转角度以及对应的缩放因子等,实现实体的移动、旋转和缩放 (4)点击菜单项或者工具条按钮,通过鼠标控制摄像机的运动,实现从不同位置及角度观察绘制的图形 (5)点击菜单项或工具条按钮,通过对话框设置光源位置及光照参数,观察对物体显示的影响 (6)点击菜单项或者工具条按钮,通过鼠标选中实体,双击鼠标左键弹出对话框,修改选中实体的材质参数,观察材质变化对物体显示的影响 (7)点击菜单项或者工具条,通过鼠标选中实体,双击鼠标左键弹出对话框,修改选中图形的纹理贴图文件及映射方式,观察对物体显示的影响
2025-12-24 17:53:34 23.63MB OpenGL swjtu 计算机图形学
1
车辆三自由度动力学MPC跟踪双移线仿真研究:Matlab与Simulink联合应用,自动驾驶控制-车辆三自由度动力学MPC跟踪双移线 matlab和simulink联合仿真,基于车辆三自由度动力学模型的mpc跟踪双移线。 ,核心关键词:自动驾驶控制; 车辆三自由度动力学; MPC跟踪双移线; Matlab和Simulink联合仿真; 车辆三自由度动力学模型的MPC跟踪双移线。,基于MPC的自动驾驶车辆三自由度动力学模型双移线跟踪仿真研究 随着科技的进步和人们对出行安全、效率要求的提升,自动驾驶技术已经成为全球研究的热点。车辆三自由度动力学模型作为理解车辆运动的基础,为自动驾驶技术的发展提供了重要的理论支撑。本研究着重于将Matlab和Simulink这两种强大的工程计算和仿真工具结合起来,用于模拟和优化车辆在特定环境下的动态响应。 MPC(Model Predictive Control,模型预测控制)是一种先进的控制策略,它通过预测未来一段时间内的系统动态行为,制定当前时刻的最优控制策略,以实现对系统行为的精准控制。在自动驾驶领域,MPC能够有效解决车辆跟踪问题,尤其是在复杂的双移线行驶环境中。本研究利用MPC技术,结合车辆三自由度动力学模型,进行车辆的路径跟踪仿真。 Matlab是一种高级数值计算环境,它提供了一套完整的编程语言和工具箱,广泛应用于工程计算、数据分析和可视化等领域。Simulink作为Matlab的补充,是一个基于图形的多域仿真和模型设计软件,它以直观的拖放式界面,允许设计者构建复杂的动态系统模型。在自动驾驶技术的研究与开发中,Matlab和Simulink的联合使用可以极大地简化仿真过程,提高仿真结果的准确性和可靠性。 本研究的仿真结果不仅展示了车辆在给定双移线轨迹上的跟踪性能,而且验证了基于车辆三自由度动力学模型的MPC控制策略的有效性。通过对不同控制参数的调整和优化,可以实现对车辆横向位置、纵向速度等关键指标的精确控制。此外,本研究还探讨了车辆在实际行驶过程中可能遇到的各种不确定因素,如路面状况变化、车辆动力学特性偏差等,为自动驾驶控制策略的设计和优化提供了重要的参考。 通过本研究,可以看出,Matlab和Simulink在自动驾驶控制系统仿真中的应用具有显著的优势。它不仅能够帮助工程师快速实现复杂控制算法的设计和验证,还能通过仿真结果对自动驾驶系统的性能进行全面评估。这些仿真工具的使用,有助于降低研发成本,缩短研发周期,为自动驾驶技术的商业化和规模化应用奠定了坚实的基础。 本研究通过Matlab和Simulink联合仿真,验证了基于车辆三自由度动力学模型的MPC控制策略在自动驾驶车辆跟踪双移线行驶中的有效性。该研究不仅为自动驾驶控制技术的发展提供了理论和技术支持,还展示了仿真技术在解决复杂控制问题中的实际应用价值。随着自动驾驶技术的不断发展和完善,基于Matlab和Simulink的仿真方法将发挥更加重要的作用。
2025-12-24 14:20:14 320KB xhtml
1
内容概要:本文详细介绍了利用COMSOL Multiphysics平台对锥形光纤进行模式传输的参数化分析。首先建立了二维轴对称的锥形光纤模型,设置了锥区和腰区的具体参数,并通过有限元法求解电场分布。接着进行了参数化扫描,分别改变了锥区长度和腰区长度,研究了它们对模式腰宽、峰值波长和传输损耗的影响。结果显示,锥区长度增加有助于聚焦光束并引起峰值波长蓝移,而较短的腰区会导致更高的传输损耗。最终得出结论,合理的锥区设计和光束均匀性对于优化光纤传输性能至关重要。 适合人群:从事光学通信、光纤传感以及微纳光子器件研究的专业人士和技术爱好者。 使用场景及目标:适用于希望深入了解锥形光纤传输特性和优化设计的研究人员,帮助他们在实际项目中更好地理解和改进光纤系统的性能。 其他说明:文中提供了详细的建模步骤和代码片段,便于读者动手实践。此外,还给出了调试技巧和注意事项,确保仿真的稳定性和准确性。
2025-12-23 15:00:45 2.32MB COMSOL 有限元法
1
6自由度并联机器人的运动学算法,重点讨论了正解和逆解的概念及其求解方法。正解涉及根据末端执行器的目标位置和姿态计算所需的关节变量,而逆解则是根据关节变量推算末端执行器的位置和姿态。文中还探讨了6个耦合的非线性方程组的求解过程,强调了正解在机器人控制中的快速收敛特性及其重要性。文章最后列举了6自由度并联机器人在工业生产线、医疗、航空航天等多个领域的实际应用。 适合人群:对机器人技术和运动学算法感兴趣的科研人员、工程师和技术爱好者。 使用场景及目标:适用于希望深入了解6自由度并联机器人运动学算法的研究人员,以及从事相关领域开发和应用的技术人员。目标是掌握正解和逆解的求解方法,提高机器人控制精度和效率。 其他说明:文章中包含了代码片段和数学公式,有助于读者更直观地理解理论概念和实际操作。
2025-12-23 10:44:55 2.27MB
1
《S3700&S5700&S6700_V200R001C00SPC300_升级指导书》是一份详细阐述华为S系列交换机,具体包括S3700、S5700和S6700型号在V200R001C00SPC300版本下的系统升级教程。这份文档旨在为网络管理员提供一套完整的升级步骤和注意事项,确保设备的稳定运行和新功能的顺利启用。 我们需要了解S3700、S5700和S6700是华为企业网络产品线中的三层以太网交换机,广泛应用于中小企业和大型企业的接入层或汇聚层。它们支持丰富的业务特性,如QoS(服务质量)、VLAN(虚拟局域网)、堆叠等,以满足不同规模网络的需求。 V200R001C00SPC300是华为交换机的一个软件版本,它包含了多项性能优化和安全更新。"C00"代表主版本,"SPC300"则表示这个版本是第300次服务包增强,通常包含修复已知问题、提升稳定性以及增加新功能。 升级过程中,首先要进行充分的准备工作,这包括备份当前配置,确保在出现意外情况时可以恢复到原状态;检查设备硬件状况,确认是否满足升级需求;了解新版本的特性与兼容性,避免因不兼容导致的问题。 升级步骤通常包括以下几个环节: 1. **下载软件包**:从华为官方网站获取对应的软件版本,确保文件完整无误。 2. **校验软件包**:使用MD5或SHA-1等工具验证软件包的完整性,防止传输过程中的数据损坏。 3. **加载软件**:将软件包上传到交换机的存储介质上,通常通过FTP、TFTP或USB等方式。 4. **执行升级**:在非工作时间进行,通过命令行界面(CLI)启动升级过程,如`sysupgrade -f <软件包路径>`。 5. **监控进度**:在升级过程中,持续观察设备状态,确保升级过程平稳进行。 6. **重启设备**:升级完成后,根据提示重启交换机,使新版本生效。 7. **检查配置**:重启后,确认新版本运行正常,检查配置是否被正确保留或需要调整。 8. **验证功能**:测试新版本的各种功能,确保业务不受影响。 升级过程中要注意的事项有: - 在升级前,务必阅读升级指导书,了解可能遇到的问题和解决办法。 - 避免在业务高峰期进行升级,以防影响网络服务。 - 保持电源稳定,避免在升级过程中断电造成设备损坏。 - 使用官方提供的升级工具和方法,不要尝试未经验证的第三方方案。 《S3700&S5700&S6700 V200R001C00SPC300 升级指导书.doc》作为详细的升级指南,不仅指导了用户如何操作,还强调了升级过程中需要注意的安全性和稳定性,是确保华为S系列交换机顺利升级至新版本的关键参考资料。
2025-12-22 11:00:28 524KB 升级指导书
1
内容概要:文章主要介绍了阶梯轴的集总动力学模型及其模态分析方法。通过对阶梯轴进行集总化处理,将其简化为若干个质量节点与无质量短轴的基础单元,并利用传递矩阵法处理该模型。为了提高计算效率,文中提出了Riccati变换,将状态矢量从4个参数简化为2个参数,从而降低了计算复杂度。文章详细描述了传递矩阵的构建、状态向量的定义及其物理意义,以及弯矩、剪力、位移和弯曲挠角的传递关系。此外,还介绍了频率扫描法,通过遍历预设频率范围寻找系统的固有频率,并结合有限元仿真结果验证计算的准确性。最后,基于Matlab平台实现了阶梯轴模态特性的计算,包括固有频率和振型的求解。 适合人群:具备机械工程基础知识,特别是对机械动力学、有限元分析有一定了解的研究人员和工程师。 使用场景及目标:① 适用于对阶梯轴等复杂机械结构进行动力学分析;② 目标是通过传递矩阵法和Riccati变换简化计算,准确求解系统的固有频率和振型,为实际工程应用提供理论支持。 其他说明:文中提供了详细的数学推导和公式,帮助读者理解传递矩阵法的具体实现过程。同时,附有具体的仿真参数和计算流程,便于读者在实践中应用这些方法。建议读者结合实际工程背景,深入理解文中提到的各种力学概念和数学工具。
1
VENSIM应用实例——牛鞭效应 宝洁公司(P&G)在研究“尿不湿”的市场需求时发现,该产品的零售数量相当稳定,波动性不大,但在考察分销中心的订货情况时却吃惊地发现其订单的变动程度比零售数量的波动大得多,而分销中心是将批发商的订货需求量汇总后进行订货的。通过进一步研究后发现,零售商往往根据对历史和现实销售情况的预测,确定一个较客观的订货量,但为了能应付客户需求增加的变化,他们通常会将预测订货量进行一定的放大后向批发商订货,而批发商也出于同样的考虑,会在其订货量的基础上再进行一定的放大后向分销中心订货——就这样,虽然顾客需求量并没有大的波动,但经过零售商、批发商和分销中心的订货放大后,订货量便一级一级地被放大了。 供应链的信息流从末端(最终客户)向源端(原始生产商)传递时,需求信息的波动会越来越大,这种信息扭曲的放大作用在图形上很像一条甩起来的牛鞭,因此被形象地称为牛鞭效应(Bullwhip Effect)。 工厂 分销商 批发商 零售商 客户
2025-12-21 18:54:41 1.62MB 系统动力学
1
### 零基础学FPGA(十四)精简指令集RISC_CPU设计精讲 #### 一、基础知识回顾 在深入了解精简指令集RISC_CPU的设计之前,我们需要明确几个概念。 **1. CPU (Central Processing Unit):** 中央处理器是计算机系统的核心组件,负责执行指令、处理数据。其主要功能包括:取指令、解码指令、执行指令等步骤。 **2. RISC (Reduced Instruction Set Computer):** 精简指令集计算机是一种简化了指令集的CPU架构设计,旨在通过减少指令数量和复杂性来提高执行效率。RISC架构强调简单性、高效性,特别适合于高性能和低功耗的应用场景。 #### 二、RISC_CPU设计概述 本次设计的目标是构建一个基于FPGA的RISC_CPU,通过一系列模块的协同工作实现基本的指令执行功能。整个设计由以下几个关键部分组成: **1. 时钟发生器:** 用于产生分频信号,本设计采用50MHz的外部时钟,经过8分频后得到一个控制信号,用于同步其他模块的操作。 **2. 指令寄存器:** 负责存储从ROM读取的指令数据,并将其分为指令码(opcode)和地址码两部分。 **3. 累加器:** 存储计算过程中的中间结果,通常用于累加操作。 **4. 算数运算器:** 执行算术和逻辑运算,如加法、减法、与逻辑、或逻辑等。 **5. 数据控制器:** 控制数据流向,例如将运算结果保存至RAM。 **6. 地址多路器:** 选择不同的地址来源,用于更新指令计数器的值或执行跳转操作。 #### 三、模块详细解析 **1. 时钟发生器** 时钟发生器是整个系统的心脏,它决定了系统的运行节奏。通过8分频技术,不仅可以简化时序控制逻辑,还能有效提高系统的稳定性和可靠性。该模块的输出被用来控制地址多路器的切换,确保指令的正确读取。 **2. 指令寄存器** 指令寄存器是存储当前正在执行指令的地方。在RISC_CPU中,每条指令被拆分为指令码和地址码两部分。指令码用于确定指令类型,而地址码则指示了操作数的位置。指令寄存器将这两部分分离出来,便于后续处理。 **3. 累加器** 累加器的主要作用是存储中间计算结果。在本设计中,累加器的初值设为0,在每次计算后,结果会被送回到累加器中,以供下一轮计算使用。这种方式能够简化硬件结构,同时保证了数据的连贯性。 **4. 算数运算器** 算数运算器是执行实际运算的模块。它根据指令寄存器中的指令码来确定应执行哪种类型的运算。例如,对于加法指令,算数运算器将两个操作数相加;而对于逻辑运算指令,则执行相应的逻辑运算。 **5. 数据控制器** 数据控制器的作用在于管理数据的流向。例如,当需要将计算结果保存到RAM中时,可以通过选通数据控制器来实现这一目的。这对于数据的持久化非常重要。 **6. 地址多路器** 地址多路器用于选择下一个指令的地址。根据不同的指令类型,地址多路器可以选择不同的地址来源,如直接跳转到某个地址或按照顺序执行下一条指令。 #### 四、总结 通过以上分析可以看出,设计一个RISC_CPU是一项复杂的任务,涉及到多个模块之间的协同工作。从时钟发生器到指令寄存器,再到算数运算器等,每个环节都至关重要。此外,掌握时序约束也是成功实现设计的关键之一。尽管过程中可能会遇到各种挑战,但只要按照计划逐步推进,最终就能够实现一个功能完整的RISC_CPU。希望本教程能够帮助读者更好地理解RISC_CPU的设计原理及其实现方法。
2025-12-21 12:42:45 80KB FPGA RISC_CPU
1
问题要求设计并实现一个桌面电话簿软件,使用已学过的动态搜索树结构(BST 或 AVL)。具体要求如下: 1. 联系人数据存储:支持复式联系人数据的存储,数据条目不少于 1000 条。每个联系人可包括姓名、城市、手机号码、住宅电话号码、办公电话号码、电子邮件、公司、地址、所属群组、备注、添加时间等 11 个字段。 2. 联系人管理:支持联系人记录的添加、删除、编辑等操作。 3. 群组管理:支持群组记录的添加、删除、编辑等操作。 4. 导入导出:支持所有联系人记录的导入、导出操作。外部数据采用 TXT 格式,内部数据采用自己设计的二进制数据文件格式。 5. 灵活查询功能: (1) 逐条翻看:显示所有联系人记录,支持分屏查看。 (2) 多种方式查询:通过城市、添加时间、公司、地址、电子邮件、备注等字段进行灵活查询。 (3) 电话号码查询:输入一个电话号码(手机、住宅、办公)的全部或一部分,显示包含该号码的联系人记录。 (4) 人名查找:输入一个人名(全名、部分名、拼音首字母、部分拼音),显示包含该姓名的联系人记录。 (5) 群组查找:选择一种群组类型,
2025-12-19 20:48:11 13.13MB
1
职业生涯规划书是大学生在即将步入社会前,对自己未来职业道路的规划和设计。本文档的撰写以计算机科学与技术专业的学生为主体,由湖南工学院指导教师提供指导。规划书的结构包含了前言、自我认知、职业认知、职业生涯规划设计以及结语五个部分,全面地指导个人职业发展规划。 一、前言部分强调了个人职业生涯规划的重要性,指出一个明确的职业规划能够帮助个人拥有清晰的方向和目标,并作出明智的职业决策。规划书不仅是个人职业发展的指导工具,也是对个人职业梦想的承诺。引述莎士比亚的话,强调了一个人需要有梦想并为之制定实现的计划。 二、自我认知部分,通过使用霍兰德职业兴趣测评、MBTI职业性格测试、360度评估和橱窗分析法等多种工具,对自己的兴趣、性格、价值观和能力进行全面的评估。如霍兰德模型中的ESC型(企业型+社会型+常规型)指出,个体倾向于社会互动,喜欢与人打交道,并对社会问题抱有兴趣。自我认知小结部分则对上述测评结果进行整合,帮助个人更好地理解自己,为职业选择提供依据。 三、职业认知部分分析了外部环境和目标职位。外部环境分析通常涉及对当前市场趋势、行业发展、就业形势的了解。目标职位分析则要求对具体岗位的职责、所需技能、行业地位等要素进行深入研究。职业素质测评和SWOT分析为个人提供了一种分析个人优势、劣势、机会和威胁的框架。 四、职业生涯规划设计部分是规划书的核心,包括确定职业目标和路径、制定行动计划、职业规划评估以及动态反馈调整。确定职业目标和路径需要明确个人的短期和长期目标,并规划达到这些目标的路径。制定行动计划意味着将职业目标分解为可操作的步骤,并设定时间表。职业规划评估则是对已规划职业路径的有效性进行定期检查。动态反馈调整是指在执行过程中根据实际情况和反馈进行必要的调整,保持职业规划的动态性和适应性。 五、结语部分是对整个职业生涯规划书的总结,强调个人对于实现职业梦想的决心和信心,并再次确认个人价值观和职业道德的重要性。 总结而言,职业生涯规划书是一份对个人未来职业发展道路的全面规划和设计,它结合了个人的兴趣、性格、价值观和能力,分析了外部环境和目标职位,制定了具体的职业目标和行动计划,并提供了评估与调整的机制,以保证个人职业发展与市场需求相适应,最终实现职业理想和抱负。对于大学生来说,这是一个指导自己走向成熟、成功职业生涯的重要工具。
2025-12-19 09:13:09 368KB
1