**图像配准与Harris角点检测** 在计算机视觉领域,图像配准是将两幅或多幅图像在空间上对齐的过程,以便于比较、融合或分析图像信息。这一技术广泛应用于医学影像分析、遥感图像处理、视频监控等多个领域。Harris角点检测是一种经典的特征检测方法,它在图像配准中扮演着重要角色。 **Harris角点检测** Harris角点检测算法由Chris Harris和Mike Stephens于1988年提出,它的核心思想是通过计算图像局部区域的灰度变化来识别图像中的角点。这些点在图像平移、旋转或缩放时仍能保持不变,因此它们是稳定的特征点。 算法的基本步骤如下: 1. **计算图像的差分矩阵**:对图像进行卷积,得到图像的差分矩阵M,即图像梯度的协方差矩阵: \[ M = \begin{bmatrix} I_x^2 & I_xI_y \\ I_yI_x & I_y^2 \end{bmatrix} \] 其中,\( I_x \) 和 \( I_y \) 分别是图像在x和y方向的梯度。 2. **计算特征值与特征向量**:然后,求解差分矩阵M的特征值(\( \lambda_1 \) 和 \( \lambda_2 \))及其对应的特征向量。特征值反映了图像局部区域的灰度变化情况。 3. **应用Harris角点检测准则**:计算响应矩阵R,用于评估点是否为角点: \[ R = \lambda_1\lambda_2 - k(\lambda_1 + \lambda_2)^2 \] 其中,k是一个经验值,通常取0.04到0.06之间,以控制检测的敏感度。 4. **设定阈值**:对R进行非极大值抑制,保留超过预定阈值的点作为角点。这些点具有较大的R值,表明它们周围的梯度方向变化显著,可能是角点。 5. **去除重复点**:通过一定距离的邻域检查去除重复的角点,确保每个检测到的角点都是唯一的。 **Harris角点在图像配准中的应用** 在图像配准中,Harris角点检测可以用于找到图像的关键特征点。这些点在不同图像中具有相似的几何特性,即使在光照、角度或尺度变化下也能保持稳定。以下是Harris角点在图像配准中的具体步骤: 1. **特征匹配**:在两幅图像中分别检测出Harris角点,然后通过特征描述符(如SIFT、SURF或ORB)匹配这些角点,找到对应关系。 2. **建立变换模型**:根据匹配的角点对,可以构建一个几何变换模型,如仿射变换、透视变换或刚性变换。常见的方法有RANSAC(随机样本一致)算法,用于去除错误匹配。 3. **图像变换**:利用建立的变换模型,对原始图像进行变换,使其与目标图像对齐。 4. **优化与验证**:对配准结果进行优化,如迭代最近点(ICP)算法,以提高配准精度。同时,可以通过重新匹配角点或计算重叠区域的像素差异来验证配准质量。 **Matlab实现** 在Matlab中,可以使用内置函数`cornerHarris`来进行Harris角点检测,`matchFeatures`和`estimateGeometricTransform`等函数进行特征匹配和图像配准。这个压缩包文件“harris图像配准(matlab)”可能包含了实现上述步骤的完整代码示例,对于学习和理解图像配准以及Harris角点检测在实际应用中的工作原理非常有帮助。 Harris角点检测是图像配准中的一种关键技术,其稳定性和鲁棒性使得它在各种视觉任务中都得到了广泛应用。结合Matlab的工具和函数,可以方便地实现这一过程,为研究和开发提供便利。
2025-04-15 09:41:09 969KB 图像配准 Harris
1
此处代码可以直接下载使用,实测效果非常好。后给出具体的实用教程和视频演示。采用ROS+PX4的开发方案,ROS进行物体识别,根据识别的位置信息发布无人机控制指令,确保无人机始终保持目标物体的正上方,在满足最小允许误差的条件下控制舵机投放。有不清楚的地方,欢迎假如我们一起交流。详细使用教程,可以参考博客: https://blog.csdn.net/qq_35598561/article/details/135559336?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22135559336%22%2C%22source%22%3A%22qq_35598561%22%7D
2025-04-13 19:59:33 1.22MB 课程资源
1
lidarslam_ros2 ros2 slam软件包的前端使用OpenMP增强的gicp / ndt扫描匹配,而后端则使用基于图形的slam。 移动机器人映射 绿色:带闭环的路径(大小为10m×10m的25x25网格) 红色和黄色:地图 概要 lidarslam_ros2是使用OpenMP增强的gicp / ndt扫描匹配的前端和使用基于图的slam的后端的ROS2程序包。 我发现即使只有16线LiDAR,即使是具有16GB内存的四核笔记本电脑也可以在室外环境下工作几公里。 (在制品) 要求建造 您需要作为扫描匹配器 克隆 cd ~/ros2_ws/src git clone --
2025-04-12 18:50:55 1.19MB localization mapping lidar slam
1
深度学习驱动的复杂环境下人员异常行为精准检测系统:多目标检测跟踪实现摔倒、越线、徘徊、拥挤检测 - 基于YoloV3+DeepSort在TensorFlow框架下的应用,基于深度学习的人员异常行为检测系统:多目标检测与跟踪实现摔倒、越线、徘徊及拥挤检测——Yolov3+DeepSort在TensorFlow框架下的应用。,人员异常行为检测 基于深度学习的人员异常行为检测,多目标检测+多目标跟踪实现人员摔倒检测,越线检测,徘徊检测,拥挤检测,yolov3+deepsort,tensorflow ,核心关键词:深度学习;人员异常行为检测;多目标检测;多目标跟踪;摔倒检测;越线检测;徘徊检测;拥挤检测;Yolov3;DeepSort;TensorFlow;,深度学习多目标检测跟踪:摔倒、越线、徘徊、拥挤行为检测
2025-04-09 00:49:24 6.48MB csrf
1
"OpenCV与Qt框架下,智能卡尺工具的设计与实现:带X、Y及角度纠偏的图像处理与形状匹配算法研究",基于OpenCV与QT的卡尺工具:工具跟随、精准定位、自动纠偏及图像处理全套源码与学习资料,基于opencv与qt开发的卡尺工具,卡尺工具,具有工具跟随功能,找线找圆工具可以根据形状匹配位置定位实现带X、Y以及角度偏差的自动纠偏,图像采集,图像处理,卡尺工具,找线,找圆,颜色检测,模板匹配,形状匹配,海康工业相机采集+基于形状的模板匹配界面,提前说明,形状匹配算法和找线找圆算法封装成dll直接调用的,其他都是源码,是不错的学习资料,程序资料 ,基于opencv与qt开发; 卡尺工具; 工具跟随功能; 形状匹配; 定位; 自动纠偏; 图像采集; 图像处理; 找线; 找圆; 颜色检测; 模板匹配; 海康工业相机采集; 形状匹配算法封装dll; 程序资料,OpenCV与Qt卡尺工具:图像处理与形状匹配的智能解决方案
2025-04-08 11:45:46 230KB
1
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-04-07 23:47:23 8.26MB matlab
1
为解决配电网中分布式光伏最大准入容量的问题,以系统安全运行为约束建立分布式光伏准入容量的鲁棒模型。为了适应新型配电网,协调系统安全性与分布式光伏准入容量之间的矛盾,在评估分布式电源准入容量时考虑包含有有载调压变压器和静止无功补偿装置等主动管理手段的网络拓扑,并建立鲁棒性指标实现不确定区间可调节鲁棒优化。通过鲁棒线性优化方法将不确定模型转化为确定的混合整数线性规划进行求解。以改进的IEEE33节点为例,通过比较本文提出的算法及随机规划算法,验证了本文所建模型的可行性和有效性。
2025-04-04 12:03:45 910KB 分布式光伏 鲁棒优化 不确定性
1
我们从一开始就聚焦于 AI 的场景化应用落地,并在智慧交通领域得到了尤为深入的应用。通 过融合我们在算法、方案设计等方面的长期创新,以及英特尔端到端的 AI 技术优势,我们能够高效、准确地识别车型等重要信息,确保交通安全,提高通行效率,从而形成安全、高效和环保的智慧交通系统。
2025-04-02 21:08:01 4.41MB 交通物流
1
STM32F103操作DS1302时钟芯片串口显示(标准库和HAL库) https://blog.csdn.net/XiaoCaiDaYong/article/details/127517485?spm=1001.2014.3001.5502
2025-03-21 20:58:03 29.37MB STM32F103 DS1302 HAL库
1
STM32C6T6标准库空白工程模板是为基于STM32C6T6微控制器的嵌入式开发提供的一套基础框架。这个模板工程主要用于帮助开发者快速启动STM32的项目,减少了从零开始搭建环境的时间。下面将详细阐述STM32C6T6、标准库以及如何利用这个空白工程模板进行开发。 STM32C6T6是意法半导体(STMicroelectronics)推出的STM32系列中的一个型号,属于F0系列,是一款基于ARM Cortex-M0内核的微控制器。它拥有低功耗特性,适用于各种嵌入式应用,如物联网设备、智能家居、工业控制等。STM32C6T6具备以下特点: 1. 内置32KB Flash存储器,可以存储程序代码。 2. 集成了4KB SRAM,用于运行时的数据存储。 3. 具有12位ADC、定时器、串行通信接口(USART/UART)、SPI和I2C等丰富的外设资源。 4. 工作电压范围宽,支持3.3V至5.5V。 5. 多种省电模式,以适应不同应用场景的能耗需求。 STM32的标准库是由ST官方提供的固件库,它包含了驱动程序和实用函数,使得开发者能够更容易地访问和控制STM32的硬件资源。标准库分为HAL(Hardware Abstraction Layer,硬件抽象层)和LL(Low-Layer,低层)两种,前者提供了一种高级、面向对象的编程接口,后者则更接近底层,效率更高。在这个空白工程模板中,通常会包含HAL库的基本配置和初始化代码,便于用户进行后续功能开发。 在使用STM32C6T6标准库空白工程模板时,你需要了解以下几个关键步骤: 1. **项目配置**:根据实际需求,配置工程的系统时钟、中断优先级、GPIO引脚复用等功能。 2. **初始化代码**:在启动文件中,通常会包含微控制器的初始化代码,如系统时钟配置、NVIC设置等。 3. **外设驱动**:利用标准库提供的函数,编写或调用已有的驱动代码来控制GPIO、ADC、串口等外设。 4. **应用逻辑**:在此基础上,编写实现具体功能的业务代码。 5. **调试与测试**:使用调试工具如JTAG或SWD接口进行程序的调试,确保代码正确无误。 C6T6EmptyTemplate(StandardLib)这个压缩包文件很可能包含了上述的项目配置文件、启动文件、头文件、链接脚本等,它们构成了一个基本的STM32C6T6开发环境。开发者解压后导入到IDE(如Keil、IAR或STM32CubeIDE)中,根据自己的项目需求进行修改和扩展,就可以开始进行实际的嵌入式开发工作了。 STM32C6T6标准库空白工程模板是STM32开发者的得力助手,它简化了项目的初始阶段,让开发者能够更快地专注于功能实现和优化。理解并掌握STM32C6T6的特性和标准库的使用,对于提升开发效率和项目质量至关重要。
2024-10-22 15:23:17 5.34MB stm32
1