最近学习了一下BP神经网络,为了更加深入理解自己动手利用matlab实现了神经网络,本资源附带MNIST数据集
2022-05-07 12:35:24 10.9MB 神经网络 matlab 学习 机器学习
1
利用pytho的定义函数的形式编写粒子群算法在单目标优化中的应用
2022-05-07 10:05:19 4KB python 算法 粒子群算法 单目标优化
前向反馈BP神经网络的matlab仿真,使用matlab2021a或者更高版本测试
2022-05-07 09:11:03 914B 神经网络 matlab 源码软件 人工智能
分别用改进的粒子群优化算法和改进的差分进化算法求解柔性作业车间调度问题 问题规模以(工件J*工序P*机器M)表示,例如J20P10M10表示共有20个工件,每个工件有10个工序,总共有10个加工机器可供选择。data文件夹中的文件表示程序所用的数据,其中data_first文件的问题规模是J10P5M6,data_second文件的问题规模是J20P10M10,data_third文件的问题规模是J20P20M15。对于其中数据的解释:横向表示工序,纵向表示机器,每个数值表示机器加工工序的耗时,工序和机器都是按顺序排列的。以data_first.txt文件为例,前五行分别表示第一个工件的5个工序分别在6台机器上加工的时间,第5-10行表示第二个工件的5个工序分别在6台机器上加工的时间,以此类推。 关于编码,本项目采用的是同类问题常用的编码方式,参考论文“基于改进遗传算法的柔性作业车间调度问题研究”,与该论文所述的编码方式不同的是,本项目的编码中第一段为工序编码,第二段为机器编码。DE文件夹中的三个文件分别采用三种不同的初始化方式,其中DE_first.py采用的是完全随机的
基于PSO优化BP神经网络PID控制器的仿真,使用matlab2021a或者更高版本测试 for j=1:1:H Oh(j)=( exp( net2(j)-exp(-net2(j)) ) )/(exp( net2(j)+exp(-net2(j)) )); end net3=wo*Oh; for l=1:1:Out K(l)=exp(net3(l))/(exp(net3(l))+exp(-net3(l))); %K(l)=M*net3(l); end kp(k)=M(1)*K(1); ki(k)=M(2)*K(2); kd(k)=M(3)*K(3); Kpid=[kp(k),ki(k),kd(k)]; du(k)=Kpid*epid; u(k)=u_1+du(k);
附数据;使用BP神经网络进行电力系统短期负荷预测 完整程序
2022-05-07 09:04:50 5.32MB 神经网络 源码软件 文档资料 人工智能
根据粒子群算法,MPC(预测控制)在光伏电池控制中的应用 程序
2022-05-07 09:04:49 4KB 算法 源码软件
基于MATLAB写的可对遥感影像进行BP神经网络分类的m文件,里面有测试图像数据,其中感兴趣区域数据是由ENVI选取的感兴趣区域保存而来。
2022-05-06 18:10:17 2.16MB 文档资料 matlab BP
针对红外气体传感器测量精度受环境温度影响较大的问题,提出了一种基于嵌入自适应Levy变异免疫粒子群-最小二乘支持向量机(ALIPSO-LSSVM)的温度补偿算法。ALIPSO算法引入Levy flight对子代粒子进行自适应变异,确保粒子多样性,并在每次迭代之前,采用相对基学习方法初始化粒子群,提高算法的收敛速度。通过5个基准测试函数对ALIPSO算法进行性能评价,仿真结果表明该算法收敛速度较快、精度高,且具有较强的全局搜索能力。利用ALIPSO算法对LS-SVM的参数进行优化,并将该混合算法应用于红外气体传感器温度补偿,数值仿真结果表明采用该算法可将补偿结果的相对误差控制在6%范围内。
2022-05-06 14:15:18 664KB 论文研究
1
数学模型 最优路线设计 模拟退火算法.doc