早期的癌症预测非常重要,因为患者可以准备应对它。 有几种机器学习模型可以通过识别高风险的独立样本来帮助预测癌症,从而简化癌症试验的设计和规划。 这些模型使用生物标志物(例如年龄,更年期,肿瘤大小,肿瘤,乳房,乳房四分之一尺度)来预测乳腺癌。 但是,这些模型的主要缺点是后期预测以及准确性低。 因此,在这里介绍一种使用基因表达谱(基因组数据)来早期预测乳腺癌的系统。 该模型是使用不同的机器学习算法构建的,例如高度通用的支持向量机(SVM),朴素贝叶斯定理,决策树和最近邻居方法,可使用基因表达谱预测乳腺癌。
2022-05-14 18:15:28 318KB SVM (Support Vector Machine)
1
CNN(卷积神经网络)和LSTM(长短期记忆网络)的细节 卷积神经网络是一种特别有效的提取图像特征的手段。一个在大数据集如ImageNet上预训练好的模型能够非常有效的提取图像的特征。 长短期记忆网络能够处理长短不一的序列式数据,比如语言句子。给定一个输入,网络能够给出一个序列输出。
1
使用opencv扩展模块进行机器学习SVM进行手写数字分类
2022-05-14 16:05:40 970KB opencv 机器学习 支持向量机 分类
1
产品评论的情感倾向性分析是一个很有研究价值的领域,可以帮助客户、商家进行决策。针对产品评论中的属性词和情感词在文本中的各种关系,制定了8组特征选择规则,利用SVM算法训练模型来判断属性词和情感词的搭配识别,进而依据情感词及否定词等分析属性特征的情感倾向。实验结果表明:提出的基于SVM的搭配识别方法,在识别属性特征与情感词的搭配方面具有不错的分类效果。
2022-05-13 23:06:11 381KB 工程技术 论文
1
SVM_支持向量机基本原理及应用 详细介绍了SVM算法
2022-05-13 22:47:58 1003KB 支持向量机
1
本项目针对字符型图片验证码,使用tensorflow实现卷积神经网络,进行验证码识别。 项目封装了比较通用的校验、训练、验证、识别、API模块,极大的减少了识别字符型验证码花费的时间和精力。 本项目针对字符型图片验证码,使用tensorflow实现卷积神经网络,进行验证码识别。 项目封装了比较通用的校验、训练、验证、识别、API模块,极大的减少了识别字符型验证码花费的时间和精力。 本项目针对字符型图片验证码,使用tensorflow实现卷积神经网络,进行验证码识别。 项目封装了比较通用的校验、训练、验证、识别、API模块,极大的减少了识别字符型验证码花费的时间和精力。 本项目针对字符型图片验证码,使用tensorflow实现卷积神经网络,进行验证码识别。 项目封装了比较通用的校验、训练、验证、识别、API模块,极大的减少了识别字符型验证码花费的时间和精力。 本项目针对字符型图片验证码,使用tensorflow实现卷积神经网络,进行验证码识别。 项目封装了比较通用的校验、训练、验证、识别、API模块,极大的减
2022-05-13 22:05:38 352KB tensorflow cnn 人工智能 python
java 人脸识别源码下载CnnForAndroid:Android平台上使用卷积神经网络(CNN)的分类项目。 它还支持Caffe模型 CnnForAndroid 是一个android平台的深度学习实现,使用Tiny-cnn结构,提供两种识别样本:一种是caffe net的性别识别; 二是tiny-cnn网的车标识别。 待办事项列表 添加 opencl 支持。 更改为 tiny-dnn 新版本 优化代码,提高速度。 依赖关系 (适用于Android平台Opencv-2.4.9) (旧版本) 支持Caffe模型 tiny-cnn 提供了caffe-convertor.cpp 来支持caffe 模型。项目也支持caffe 模型编译caffe_convertor 和protobuf。 性别承认 该项目还为 caffe 模型提供了一个样本,用于区分男性和女性,也称为性别识别。 1.训练数据从哪里来? MORPH Album 2. the test accuracy is 90.01% in my caffe's net. 2.caffe网? 3.如何训练自己的caffe模型? (1)Plea
2022-05-13 21:04:21 135.07MB 系统开源
1
自己的故障诊断课程设计,安装环境: tensorflow1.7 cpu版 用gpu会报内存不够错误 keras==2.2.4 数据集:CWRU数据集 西储大学轴承数据集 已附带处理好的数据集 包含CNN预测程序,已在本机使用。 直接可以使用,无bug版本。
2022-05-13 17:06:45 145.86MB 故障诊断 深度学习 CNN CRWU
交通流量预测是智能交通系统中非常重要的研究领域,传统的预测方法在交通流量预测中有着非常广泛的应用。但是,在短时交通流量预测中,由于其影响因素错综复杂,传统的预测方法对于短时交通流量不能很好地进行预测。随着机器学习和数据挖掘各种理论的不断提出及完善,机器学习和数据挖掘与交通流量预测的结合是智能交通系统未来发展的一个重要方向。本文利用SVM(supportvectormachine)构建了短时交通流量预测模型,并利用遗传算法(geneticalgorithm)对SVM的惩罚参数C和核参数。进行优化,同时比较S
2022-05-13 13:01:25 3.18MB 自然科学 论文
1
用matlab实现的fsvm(模糊支持向量机算法),每个训练样本多加了模糊丽都标签。
2022-05-13 09:54:49 27KB matlab fsvm 模糊svm
1