使用 Wild Horse Optimizer (WHO) 的支持向量机 (SVM) 超参数优化(matlab代码) 我们使用 Wild Horse Optimizer 作为解决工程优化问题的强大且快速的元启发式算法,在分类问题中开发优化支持向量机算法超参数(内核、c、gamma) 首先,您可以使用任何带有编辑 Main.m 文件的数据集,然后单击运行
2022-05-11 09:04:42 12KB matlab 支持向量机 文档资料 开发语言
使用Haris Hawks算法对SVM进行超参数优化的Matlab代码
2022-05-11 09:04:22 4KB 支持向量机 matlab 算法 机器学习
晶圆图模式分类 1.数据说明 WM-811K数据集 在实际制造中从46393个批次中收集了811457个晶圆图 172950个晶圆被领域专家标记。 9种缺陷模式类别(中心,甜甜圈,边缘环,边缘局部,局部,随机,近满,划痕) 删除了四个裸片少于100个的异常晶圆图(无图案类) 2.手动特征提取方法 1]特征提取 1)密度特征 晶圆图分为13个区域(4个边缘区域,9个中心区域) 每个区域的缺陷密度用作密度特征 13个提取的特征 2)几何特征 通过噪声过滤提取显着区域 基于最大面积的显着区域,提取六个几何特征周长,面积,短轴长度,长轴长度,坚固性和偏心率 6个提取的特征 3)features功能 通过radon变换创建根据一系列投影创建晶圆图的二维表示 应用三次插值以获得相同数量的行。 根据radon转换的结果和提取的行平均值得出20行 行标准差 每行 40个提取的特征 总共59个
2022-05-11 00:39:12 203KB JupyterNotebook
1
【图像识别】猫狗识别(CNN)-附件资源
2022-05-10 21:32:29 106B
1
基于MTCNN的人脸检测,口罩检测,训练,标注, PyTorch+python 说明文档 基于深度学习的口罩检测 是否戴口罩,分类,警报
2022-05-10 20:06:18 44.55MB cnn 综合资源 人工智能 神经网络
1
论文将支持向量机的机器学习方法引入到医学图像的分类问题。首先概述 了支持向量机的理论基础和数学模型,着重介绍了支持向量机的推广能力和核 函数理论。其次介绍了一些主要的改进支持向量机学习算法,分析了这些算法 的优缺点。最后应用支持向量机方法对乳腺X线图像提取出来的特征样本进行 分类,采用交叉检验方法进行支持向量机核函数参数的选择,取得了较好的分 类准确率。
2022-05-10 18:39:08 2.38MB 机器学习 统计学习理论 支持向量机
1
麻雀算法为2020年的新算法,这里用麻雀算法(SSA)优化支持向量机,并以滚动轴承故障诊断为例子,代码注释较全,适合新手,可以跑出来,本人亲自测试过,绝对可以。
2022-05-10 18:10:20 107KB 支持向量机 算法 机器学习 人工智能
matlab代码放大 PyTorch版本 抽象的 基于模型的优化方法和判别式学习方法已成为解决低视力中各种逆问题的两种主要策略。 通常,这两种方法都有其各自的优缺点,例如,基于模型的优化方法可灵活地处理不同的逆问题,但出于性能良好的目的,通常以复杂的先验条件耗时; 同时,判别式学习方法测试速度较快,但其应用范围受到专门任务的极大限制。 最近的工作表明,借助可变分割技术,可以将去噪器先验插入为基于模型的优化方法的模块部分,以解决其他反问题(例如,去模糊)。 当通过判别学习获得降噪器时,这样的集成会带来相当大的优势。 但是,仍然缺乏与快速判别去噪器集成的研究。 为此,本文旨在训练一组快速有效的CNN(卷积神经网络)去噪器,并将其集成到基于模型的优化方法中,以解决其他逆问题。 实验结果表明,学习的去噪器集不仅可以实现有希望的高斯去噪结果,而且可以用作为各种低级视觉应用提供良好性能的先决条件。 基本思想 借助可变分裂技术,例如乘数交替方向方法(ADMM)和半二次分裂(HQS)方法,可以分别处理一般图像恢复公式的保真度项和正则项项,尤其是正则化项仅对应于降噪子问题。 因此,这可以将任何区分式去噪
2022-05-10 17:19:47 208.89MB 系统开源
1
本资源是SVM神经网络的信息粒化时序回归预测的matlab仿真。本资源利用SVM对进行模糊信息粒化后的上证每日的开盘指数进行变化趋势和变化空间的预测,通过实际检验会看到这种方法是十分可行的并且结果很是可靠。
2022-05-10 16:50:45 348KB matlab代码 SVM 回归预测
1
Shallow Triple Stream Three-dimensional CNN
2022-05-10 16:03:54 707KB cnn 人工智能 神经网络 matlab