ZLUDA是Intel GPU上CUDA的直接替代品。 ZLUDA允许使用性能接近自然的Intel GPU运行未经修改的CUDA应用程序(详情请参见下文)。 它可与当前集成的Intel UHD GPU配合使用,并将与未来的Intel Xe GPU配合使用。ZLUDA ZLUDA是Intel GPU上CUDA的替代产品。 ZLUDA允许使用性能接近自然的Intel GPU运行未经修改的CUDA应用程序(详情请参见下文)。 它可与当前集成的英特尔UHD GPU一起使用,并将与未来的英特尔Xe GPU一起使用。性能ZLUDA性能已通过Intel UHD 630上的GeekBench 5.2.3进行了测量。一项测量是使用OpenCL完成的,另一项测量是使用CUDA与Intel GPU的完成的伪装成(相对较慢的)NVIDIA GPU
2021-11-25 17:36:15 959KB Python Deep Learning
1
nsfw_data_scraper:脚本集合以聚集图像数据,目的是训练NSFW图像分类器
2021-11-25 16:37:04 4.47MB machine-learning deep-learning nsfw pornography
1
pix2pix:使用生成对抗网络进行图像到图像的翻译
2021-11-25 16:25:10 4.57MB computer-vision deep-learning neural-network matlab
1
头部姿势估计 使用TensorFlow和OpenCV进行实时人头姿势估计。 入门 这些说明将为您提供在本地计算机上运行并运行的项目的副本,以进行开发和测试。 先决条件 该代码已在Ubuntu 20.04上进行了测试。 正在安装 该存储库已经提供了用于面部标志检测的预训练模型。 只是git clone然后就可以了。 # From your favorite development directory: git clone https://github.com/yinguobing/head-pose-estimation.git 跑步 视频文件或摄像头索引应通过参数分配。 如果未提供任何来源
1
使用长期短期记忆(LSTM)进行风能预测 有关完整的详细信息,请阅读CSE 523项目报告.pdf。 介绍 由于风速/功率具有可再生性和环境友好性,因此在地球上受到越来越多的关注。 随着全球风电装机容量的Swift增加,风电行业正在发展为大型企业。 可靠的短期风速预测在风能转换系统中起着至关重要的作用,例如风轮机的动态控制和电力系统调度。 精确的预测需要克服由于天气条件波动而导致的可变能源生产问题。 风产生的功率高度依赖于风速。 尽管它是高度非线性的,但风速在特定时间段内遵循特定模式。 我们利用这种时间序列模式来获得有用的信息,并将其用于功率预测。 LSTM用于对数据执行不同的实验并得出结论。 结论 我们的目标是改善对使用风能发电的功率的预测,并且已经实现了将LSTM用作机器学习模型并对其进行模型优化。 我们还观察到,如果风速小于4 m / s,则系统生成的功率为零。 LSTM无法学习这
2021-11-24 21:40:43 6.85MB deep-learning prediction lstm lstm-neural-networks
1
颜世伟 我们的目标是创建一个能够生成现实中不存在的逼真的人类图像的模型。 (将来,我将在GAN及其变体上上传一些用例)。 这些AI背后的技术称为GAN,即“生成对抗网络” 。 与其他类型的神经网络(GAN)相比,GAN采取的学习方法不同。 GAN的算法体系结构使用了两个神经网络,分别称为生成器和鉴别器,它们相互“竞争”以产生所需的结果。 生成器的工作是创建看起来逼真的假图像,而鉴别器的工作是区分真实图像和假图像。 如果两者均能正常工作,则结果是看起来像真实照片的图像。 GAN架构: 数据集可以从以下下载: : 您可以在上关注本文,以逐步了解它,并检查我的以进行实施。 输入图像样本: 输出:
2021-11-24 19:58:06 10.25MB python deep-learning neural-network gan
1
深度大能耗模型难有前途?字节&UCSB李磊等发布 《绿色深度学习》61页pdf阐述碳中和时代下深度学习发展之路 深度学习这十年发展催生了人工智能浪潮的第三次复兴。但深度学习需要强大的计算力,尤其是随着BERT等预训练大模型的开启,能耗成为深度学习的一个重要问题。现在尤其是在碳中和碳达峰时期,算法的能耗性是个总要的考量。来自字节跳动研究人员发布了《绿色深度学习》综述论文,概述了(1)紧凑的网络,(2)高效的训练策略,(3)高效的推理方法,(4)高效的数据使用。值得关注
2021-11-24 16:12:15 743KB 深度学习
1
新加坡国立大学最新「大规模深度学习优化」综述论文,带你全面了解最新深度学习准确率和效率的优化方法 【导读】深度学习优化是构建深度学习模型中的一个关键问题。来自NUS的研究人员发布了《大规模深度学习优化》综述论文,DL优化目标是双重的: 模型准确性和模型效率。至于模型的准确性,研究了最常用的优化算法,从梯度下降变量到(大批量)自适应方法,从一阶方法到二阶方法。此外,还阐述了在大批量训练中出现的泛化差距这一有争议的问题。 深度学习在人工智能的广泛应用中取得了可喜的成果。更大的数据集和模型总是产生更好的性能。然而,我们通常花更长的训练时间在更多的计算和通信上。在这项综述中,我们的目标是提供一个清晰的草图,关于优化大规模深度学习的模型准确性和模型效率。我们研究最常用于优化的算法,阐述大批量训练中出现的泛化缺口这一有争议的话题,并回顾SOTA解决通信开销和减少内存占用的策略。
2021-11-24 13:07:11 988KB
1
Retinex深度自调整低光图像增强的切换视图 论文“ Retinex的切换视图:深度自规则微光图像增强”的代码。 该实现仅用于非商业用途。 要求 python 3.6.12 火炬1.6.0 火炬视觉0.7.0 CUDA 10.1 科尔尼亚0.4.1 测试 python test.py 您应该指定测试图像路径和输出路径。 火车 在下载训练数据集(SICE) python main.py 接触 如有任何疑问,请通过与天联系。
2021-11-23 22:37:00 15.3MB Python
1