Wind-Energy-Prediction-using-LSTM:使用LSTM进行风能预测的时间序列分析-源码

上传者: 42104181 | 上传时间: 2021-11-24 21:40:43 | 文件大小: 6.85MB | 文件类型: -
使用长期短期记忆(LSTM)进行风能预测 有关完整的详细信息,请阅读CSE 523项目报告.pdf。 介绍 由于风速/功率具有可再生性和环境友好性,因此在地球上受到越来越多的关注。 随着全球风电装机容量的Swift增加,风电行业正在发展为大型企业。 可靠的短期风速预测在风能转换系统中起着至关重要的作用,例如风轮机的动态控制和电力系统调度。 精确的预测需要克服由于天气条件波动而导致的可变能源生产问题。 风产生的功率高度依赖于风速。 尽管它是高度非线性的,但风速在特定时间段内遵循特定模式。 我们利用这种时间序列模式来获得有用的信息,并将其用于功率预测。 LSTM用于对数据执行不同的实验并得出结论。 结论 我们的目标是改善对使用风能发电的功率的预测,并且已经实现了将LSTM用作机器学习模型并对其进行模型优化。 我们还观察到,如果风速小于4 m / s,则系统生成的功率为零。 LSTM无法学习这

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明