支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane) SVM使用铰链损失函数(hinge loss)计算经验风险(empirical risk)并在求解系统中加入了正则化项以优化结构风险(structural risk),是一个具有稀疏性和稳健性的分类器。SVM可以通过核方法(kernel method)进行非线性分类,是常见
2021-12-27 22:17:46 43KB python python算法 svm
1
包括背景去除 手型提取 用不变矩方法描述手型 SVM样本训练与手势识别
2021-12-27 20:27:58 20.61MB 手势识别 SVM
1
信用卡欺诈问题概述实现过程SVM介绍数据源下载代码实现代码解释总结 概述 初衷是因为引用卡欺诈问题相对与其他机器学习问题略有不同,因为二分类数据量差距过大,导致以往的评价方法对其不适用,如下图的284807 笔交易中只有492笔是欺诈行为,如果用以为的准确率评价几乎都在99%以上,但是这并不能说明模型好,因为即使漏掉1个欺诈交易都是损失很大的,所以这篇里引入了召回率和精确率,进行综合评价,详细步骤如下: 对数据源中不比较的字段进行删减,对数值型数据进行规范化,因为没有测试集数据,所以进行数据划分。 数据建模使用的是LinearSVR,因为LinearSVC 对线性分类做了优化,对于数据量大的线
2021-12-27 20:16:52 91KB 信用 信用卡
1
论文研究-供水管网爆管故障诊断的PSO-SVM方法.pdf,  根据供水管网的实际水压监测数据, 采用粒子群算法优化反演管道的海曾-威廉斯系数, 并通过在管道中间加入虚节点来模拟爆管故障, 进而基于节点水压法建立了管网在爆管故障情况下的水力计算模型. 由计算模型计算出一组不同爆点、不同爆管程度组合下的监测点处的水压值, 以此反向训练支持向量机(SVM)模型, 并通过粒子群算法(PSO)对优化支持向量机模型的核参数, 建立了基于PSO-SVM方法的供水管网爆管诊断模型. 最后, 通过一个供水管网的室内实验模型验证了上述诊断模型的有效性.
2021-12-27 10:52:34 675KB 论文研究
1
利用多标签对数据进行多分类,效果会有很大的改善,example里面是主程序,para的值自己给定。
2021-12-26 23:08:25 54KB multi-lable multi-SVM 分类
1
支持向量机 无需sklearn即可从头开始进行教育性SVM实现。 CVXOPT用作方程式求解器。 对于二进制分类器,标签应为[-1,1]。 multi_SVM.py是使用OneVsRest策略的多类SVM。 支持自定义内核,实现了线性和rbf内核。
2021-12-26 22:28:38 19KB support python learning machine-learning
1
影响个人信用的因素很多。 将套索技术引入个人信用评估,分别建立套索逻辑,套索支持向量机和组套索逻辑模型。 变量选择和参数估计也同时进行。 根据某贷款平台的个人信用数据集,可以通过实验得出结论,与全变量Logistic模型和逐步Logistic模型相比,Group Lasso-Logistic模型的变量选择能力最强,其次是套索物流和套索SVM。 这三个基于套索变量选择的模型都具有比逐步选择更好的过滤能力。 同时,组套索逻辑模型可以消除或保留相关的虚拟变量作为一个组,以方便模型解释。 在预测准确性方面,Lasso-SVM在训练集中对默认用户的预测准确性最高,而在测试集中,Group Lasso-logistic对默认用户的分类准确性最高。 无论是在训练集中还是在测试集中,套索逻辑模型对于非默认用户都具有最佳分类精度。 基于套索变量选择的模型还可以更好地筛选出影响个人信用风险的关键因素。
1
台湾大学林智仁开发的支持向量机工具包,一个很适用的工具,里面有详细的使用说明
2021-12-26 18:58:42 667KB SVM
1
支持向量机是机器学习领域的研究热点之一,其理论基础是统计学习理论.该文严谨且通俗地描述了这一理论的概貌,并提出有附加信息的统计学习理论的设想.
2021-12-26 16:29:13 6.64MB 支持向量机SVM 线性分类回归
1
matlab精度检验代码 一个典型的单词分类管道包的示例。 图由 项目3:场景识别与单词袋 找到我的执行结果。 简短的 截止日期:11月18日,晚上11:59 部分您必须下载 VL Feat Matlab参考: 所需文件:results / index.md和代码/ 概述 该项目的目的是向您介绍图像识别。 具体来说,我们将从最简单的方法(微小的图像和最近的邻居分类)开始,检查场景识别的任务,然后继续研究类似于最新技术的方法,这些方法包括量化的局部特征和线性支持向量机学习的分类器。 单词袋模型是一种流行的图像分类技术,其灵感来自自然语言处理中使用的模型。 该模型会忽略或轻视单词排列(图像中的空间信息),并根据视觉单词频率的直方图进行分类。 视觉单词“词汇”是通过将大量本地特征集聚在一起而建立的。 有关具有量化特征的类别识别的更多详细信息,请参见Szeliski第14.4.1章。 此外,14.3.2讨论了词汇的创建,而14.1涵盖了分类技术。 对于这个项目,您将实现一个基本的单词袋模型,并且有很多机会获得额外的信誉。 通过在15个场景数据库(在上引入,尽管建立在先前发布的数据集之上)上的训
2021-12-26 13:38:22 92.65MB 系统开源
1