matlab精度检验代码-Scene-recognition-with-bag-of-words:使用SIFT和支持向量机(SVM)包进行场景

上传者: 38712548 | 上传时间: 2021-12-26 13:38:22 | 文件大小: 92.65MB | 文件类型: -
matlab精度检验代码 一个典型的单词分类管道包的示例。 图由 项目3:场景识别与单词袋 找到我的执行结果。 简短的 截止日期:11月18日,晚上11:59 部分您必须下载 VL Feat Matlab参考: 所需文件:results / index.md和代码/ 概述 该项目的目的是向您介绍图像识别。 具体来说,我们将从最简单的方法(微小的图像和最近的邻居分类)开始,检查场景识别的任务,然后继续研究类似于最新技术的方法,这些方法包括量化的局部特征和线性支持向量机学习的分类器。 单词袋模型是一种流行的图像分类技术,其灵感来自自然语言处理中使用的模型。 该模型会忽略或轻视单词排列(图像中的空间信息),并根据视觉单词频率的直方图进行分类。 视觉单词“词汇”是通过将大量本地特征集聚在一起而建立的。 有关具有量化特征的类别识别的更多详细信息,请参见Szeliski第14.4.1章。 此外,14.3.2讨论了词汇的创建,而14.1涵盖了分类技术。 对于这个项目,您将实现一个基本的单词袋模型,并且有很多机会获得额外的信誉。 通过在15个场景数据库(在上引入,尽管建立在先前发布的数据集之上)上的训

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明