卷积神经网络的开发,用于音乐音频文件的多标签自动标记 初步步骤 下载mp3文件,然后使用以下方法将其组合:cat mp3.zip。*> single_mp3.zip从以下子文件夹中提取文件:find。 -mindepth 2型f -print -exec mv {}。 ; 介绍 通常,音乐音频文件可以随附与其内容有关的元数据,例如自由文本描述或标签。 事实证明,标签更有用,因为它们可以提供对音频文件的更直接描述,并且可以用于与音乐相关的推荐系统中的任务,如按性别分类,艺术家,乐器等。 由于并非所有音频文件都带有标签,因此需要自动标记。 广泛使用的一种方法涉及使用无监督特征学习,例如K均值,稀疏编码和Boltzmann机器。 在这些情况下,主要关注的是捕获低水平音乐结构,这些结构可用作某些分类器的输入。 另一种方法涉及受监督的方法,例如各种体系结构类型(MLP,CNN,RNN)的深层神经
1
tensorflow 卷积神经网络 cifar10 有代码解析 对于入门学习者很有帮助
2021-11-03 19:03:03 7KB tensorflow 卷积神经网络 cifar10
1
Android基于卷积神经网络的数字手势识别安卓APP,识别数字手势0-10 Android studio编译,项目有源码和apk,参考链接:https://blog.csdn.net/babyai996/article/details/121196044
2021-11-03 12:01:13 68.81MB android cnn
用反向传播方法解决全波非线性逆散射问题 该Matlab代码用于通过BPS用卷积神经网络解决逆散射问题。 版权所有:copyright:2019,新加坡国立大学,准威。 请先下载matconvnet 1.0-beta23: ://www.vlfeat.org/matconvnet/记住将其压缩。 要使用mex,您还需要安装Visual Studio。 (1)Matlab代码用于在Z.Wei和X.Chen,“全波非线性逆散射问题的深度学习方案”中实施反向传播方案(BPS),IEEE地理科学与遥感学报,57( 4),第1849-1860页,2019年。此Matlab代码用于通过BPS解决卷积神经网络的逆散射问题,该方法由准威(weizhun1010 @ gmail。com)编写。 如有任何疑问,请随时联系。 仅需要CPU,您可以轻松地将其调整为GPU版本或Python版本。 (2)训练后,您可以通过运行“
2021-11-03 10:16:20 10.91MB MATLAB
1
DrowsyDriverDetection 使用Keras和卷积神经网络进行困倦驾驶员检测。 数据集: 眼睛数据集(不再可用): : 打哈欠数据集: : 学分:, 注意:泡菜文件包含用于闭眼,睁眼和打哈欠的预处理数据集,泡菜文件为closed_eyes.pickle , open_eyes.pickle , yawn_mouths.pickle 。 包含的文件: eyePreprocess.py和yawnPreprocess.py :通过将图像转换为灰度并将它们分为训练集和测试集来对数据进行预处理 eyesCNN.py和yawnCNN.py :根据训练数据训练CNN。 Code_archive/eyeDetect.py和Code_archive/faceDetect.py :简单的眼睛和面部检测代码使用16层级联,而不是传统的,因为原始的无法正确检测面部。
2021-11-02 20:38:53 3.93MB Python
1
将任何 2D CNN 扩展到 3D CNN,以用于动作识别等研究。 它为 Mathworks 的大多数官方预训练权重模型扩展了多功能性! ( https://ww2.mathworks.cn/matlabcentral/fileexchange/?q=profileid:8743315 )
2021-11-02 14:37:10 6KB matlab
1
一、卷积神经网络 卷积神经网络(ConvolutionalNeuralNetwork,CNN)最初是为解决图像识别等问题设计的,CNN现在的应用已经不限于图像和视频,也可用于时间序列信号,比如音频信号和文本数据等。CNN作为一个深度学习架构被提出的最初诉求是降低对图像数据预处理的要求,避免复杂的特征工程。在卷积神经网络中,第一个卷积层会直接接受图像像素级的输入,每一层卷积(滤波器)都会提取数据中最有效的特征,这种方法可以提取到图像中最基础的特征,而后再进行组合和抽象形成更高阶的特征,因此CNN在理论上具有对图像缩放、平移和旋转的不变性。 卷积神经网络CNN的要点就是局部连接(LocalConn
2021-11-01 22:59:21 66KB c OR test
1
一个画的visioCNN流程和notability自写笔记
2021-11-01 21:01:25 12.95MB CNN
1
卷积神经网络CNN代码解析-matlab.doc,,,,,,,,
2021-11-01 19:09:04 576KB 卷积神经
1
基于实现多光谱图像的多标签场景分类为目的,采用卷积神经网络的方法,通过计算数据集中所有样本标签的共现矩阵,利用共现矩阵为每个标签分配不同的权重,提出了一种新的计算损失函数的方法。所设计的卷积神经网络能够充分利用除了红绿蓝三通道之外的光谱信息,同时也能够利用已有的预训练的卷积神经网络权重进行参数的初始化,使得网络能够快速收敛。所提出的算法在Planet Amazon数据集上取得了最高的F值,从而得出了该算法具有高准确率和高可行性的结论。
1