灰狼优化算法(GWO)具有较强的局部搜索能力和较快的收敛速度,但在解决高维和复杂的优化问题时存在全局搜索能力不足的问题.对此,提出一种改进的GWO,即新型反向学习和差分变异的GWO(ODGWO).首先,提出一种最优最差反向学习策略和一种动态随机差分变异算子,并将它们融入GWO中,以便增强全局搜索能力;然后,为了很好地平衡探索与开采能力以提升整体的优化性能,对算法前、后半搜索阶段分别采用单维操作和全维操作形成ODGWO;最后,将ODGWO用于高维函数和模糊C均值(FCM)聚类优化.实验结果表明,在许多高维Benchmark函数(30维、50维和1000维)优化上,ODGWO的搜索能力大幅度领先于GWO,与state-of-the-art优化算法相比,ODGWO具有更好的优化性能.在7个标准数据集的FCM聚类优化上, 与GWO、GWOepd和LGWO相比,ODGWO表现出了更好的聚类优化性能,可应用在更多的实际优化问题上.
1
针对标准飞蛾扑火优化算法存在的易陷入局部最优陷阱、全局寻优能力不足的问题,借鉴混沌序列、模拟退火算法和遗传算法,提出Tent混沌和模拟退火改进的飞蛾扑火优化算法。首先,通过Tent混沌序列初始化种群,增加种群多样性;然后对当前最优解增加扰动产生新解,并与当前最优解按比例杂交相加,根据模拟退火算法中的Metropolis准则判断是否接受杂交后的新解,最终获得最优解。分别使用复杂高维基准函数和航迹规划问题测试算法性能。其中,6个复杂基准函数寻优测试结果表明,对于10维基准函数,该算法经过约0.25秒收敛到最优值;对于50维基准函数,该算法经过约0.5秒收敛到最优值。与标准飞蛾扑火优化算法和其它智能优化算法相比,该算法能够有效跳出局部最优解,寻优精度更高,收敛速度更快。航迹规划仿真表明,对有4个禁飞区和2个威胁源的空域环境,该算法经过大约100次迭代可以得到最优航迹,与标准飞蛾扑火优化算法相比精度更高,具有实际应用价值。因此,该算法具有更好的寻优性能。
1
群体智能是一个研究领域,它对成群的昆虫或动物的集体行为进行建模。 已经提出了由这些模型产生的几种算法来解决范围广泛的复杂优化问题。 在本文中,提出了一种称为社交蜘蛛优化(SSO)的新型群算法来解决优化任务。 SSO 算法基于模拟社交蜘蛛的合作行为。 在所提出的算法中,个体模仿一组蜘蛛,这些蜘蛛根据合作群体的生物学规律相互交互。 该算法考虑两种不同的搜索代理(蜘蛛):男性和女性。 根据性别,每个个体都由一组不同的进化算子引导,这些算子模仿通常在群体中发现的不同合作行为。 为了说明所提出方法的熟练程度和稳健性,将其与其他众所周知的进化方法进行了比较。 比较检查了进化算法文献中通常考虑的几个标准基准函数。 结果显示了所提出的方法的高性能,用于搜索具有多个基准函数的全局最优值。 文章发表于: Cuevas, E., Cienfuegos, M., Zaldívar, D., Pérez-Cisn
2022-03-18 10:49:52 6KB matlab
1
果蝇优化算法的基本原理是初始化种群的中心位置,利用敏锐的嗅觉进行搜索,即根据中心位置随机产生多个邻域解。计算各可行解的味道浓度,即适应度值,然后利用视觉从中选择较好的解,更新替换中心位置,然后进行迭代寻优,以更好的靠近食物源。 FOA在整个迭代寻优过程中,所有个体都聚集到本次迭代的最优个体附近,只向当前最优果蝇个体学习,极易是算法陷入局部最优。要克服早熟的问题,必须提供一种机制可以跳出局部最优,在其他解空间中继续搜索。
2022-03-16 16:56:14 161.63MB 果蝇算法 调度问题 C++ 硕士课题
1
零阶和一阶优化算法,公式推导详细在有限元分析中有较好的应用
2022-03-16 15:22:57 213KB 零阶和一阶优化算法
1
零阶优化方法和一阶优化方法通过对目标函数逼近或对目标函数加罚函数的方法将约束的优化问题转换为非约束的优化问题。两种算法的主要区别在于:零阶算法不利用一阶导数信息,一阶算法利用一阶导数信息;因此,一阶算法迭代一次所需要的时间大于零阶算法。
2022-03-16 15:21:05 118KB 优化
1
解决最优化问题的方法 传统搜索方法 保证能找到最优解 Heuristic Search 不能保证找到最优解
2022-03-15 15:36:37 2.62MB 粒子群优化 算法 解析
1
利用matlab写了粒子群优化算法的一个脚本文件,每行代码都有详细注释,可以根据代码内容自行修改,实现自己需要的功能
2022-03-15 15:06:03 2KB 粒子群优化
1
数值最优化算法与理论习题解答,部分答案有,部分没有
2022-03-15 13:20:46 1.47MB 数值最优化算法与理论习题解答
1