我们证明,M-理论接受一类超对称八维压缩背景解,该解具有内部复杂的纯自旋,比Calabi-Yau更为普遍。 基于此结果,我们获得了具有外部三维Minkowski时空的一类特殊的超对称M理论八维非几何压缩背景,证明了非几何压缩的整体空间也是可微的 歧管,尽管相对于相应的标准M理论压实背景而言,其几何和拓扑特性有很大不同:它是一个紧凑的复杂歧管,它允许Kähler覆盖层具有由相对于Kähler度量的全纯同构性进行的甲板变换。 我们表明,这类非几何压缩是通过MarioGarcía-Fernández和Heterotic Supergravity的作者最初开发的机制来逃避Maldacena-Nuñezno-go定理的,因此不需要l P校正即可。 非平凡的翘曲因子或四形式的通量。 我们获得了一个复杂的Hopf四折方程组的显式压缩背景,该方程组解决了该理论的所有运动方程,包括运动的翘曲因子方程。 我们还表明,此类非几何压缩体在射影Kähler基体上配备了全同性主圆环纤维化,并且具有几乎平行的G 2叶的余维一叶化,因此与M的工作联系。 Babalic和C. Lazaroiu讨论了最一般的M理论超对
1