讲述数据建模的一本书第二卷分卷1/2
2024-04-10 19:34:24 50MB
1
Python是一种高级、通用、解释型的编程语言,由Guido van Rossum于1989年发起,1991年正式发布。Python以简洁而清晰的语法著称,强调代码的可读性和易于维护。以下是Python的一些主要特点和优势: 易学易用: Python的语法设计简单直观,更接近自然语言,使初学者更容易上手。这种易学易用的特性促使了Python在教育领域和初学者中的广泛应用。 高级语言: Python是一种高级编程语言,提供了自动内存管理(垃圾回收)等功能,减轻了程序员的负担,同时具有动态类型和面向对象的特性。 跨平台性: Python具有很好的跨平台性,可以在多个操作系统上运行,包括Windows、Linux、macOS等,使得开发的代码可以轻松迁移。 丰富的标准库: Python内置了大量的模块和库,涵盖了文件操作、网络编程、数据库访问等各个方面。这些标准库使得开发者能够快速构建功能丰富的应用程序。 开源: Python是开源的,任何人都可以免费使用并查看源代码。这种开放性促进了Python社区的发展,使得有大量的第三方库和框架可供使用。 强大的社区支持: Python拥有庞大而活跃的开发社区,这使得开发者可以轻松获取帮助、分享经验,并参与到Python的发展中。 适用于多个领域: Python在各种领域都有广泛的应用,包括Web开发、数据科学、人工智能、自动化测试、网络编程等。特别是在数据科学和人工智能领域,Python成为了主流的编程语言之一。 支持面向对象编程: Python支持面向对象编程,允许开发者使用类和对象的概念,提高了代码的重用性和可维护性。
2024-04-10 00:58:34 78.33MB python 毕业设计 课程设计
1
你不用去下载part1,2,3,4,5 这一个就够了 java web开发实战1200例 第二卷 源码.7z 压缩后大小:131 MB 解压后大小:879 MB
2024-04-10 00:19:47 131.74MB java web开发实战 1200例 第二卷源码
1
基于卷积神经网络-长短期记忆网络(CNN-LSTM)分类预测,matlab代码,要求2019及以上版本。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2024-04-09 16:35:48 158KB 网络 网络 matlab lstm
1
通过U盘、USB鼠标、USB键盘、USB MIDI键盘、USB转串口、自定义的USB HID设备和自定义的USB设备等几个具体的USB例子,一步步讲解USB设备及驱动程序和应用程序开发的详细过程和步骤。最后两章介绍USB WDM驱动开发,并给出一个简单的USB驱动和USB上层过滤驱动的实例。 《圈圈教你玩USB》的读者对象主要是USB设备与驱动设计的初学者和提高者。 因上传容量限制,本书分两卷,内容清晰并附有完整目录,便于阅读
2024-04-09 13:47:11 35.19MB usb
1
CSDN佛怒唐莲上传的视频均有对应的完整代码,皆可运行,亲测可用,适合小白; 1、代码压缩包内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主或扫描博客文章底部QQ名片; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2024-04-09 10:48:36 2.24MB matlab
1
给定人脸照片完成具体的情绪识别,选手需要根据训练集数据构建情绪识别任务,并对测试集图像进行预测,识别人脸的7种情绪。
2024-04-09 09:24:26 373.67MB 人脸识别
1
Python课程设计—基于卷积神经网络手写数字识别系统,经老师指导通过的高分项目。 选题 利用numpy完成手写数字数据集的识别,完成多分类问题,搭建神经网络,并且完成模型的训练以及性能评估,可视化数据 用到的知识 sklearn 数据集的提取分割 yaml配置文件使用 numpy实现各个神经层 参数初值选择 梯度下降方法选择 sklearn 分类模型评估 matplotlib数据可视化 设计模式 Markdown写报告
2024-04-08 17:06:06 559KB python课程设计 卷积神经网络
基于python实现的CNN卷积神经网络手写数字识别实验源码+数据集(高分毕业设计).zip该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 基于python实现的CNN卷积神经网络手写数字识别实验源码+数据集(高分毕业设计).zip该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 基于python实现的CNN卷积神经网络手写数字识别实验源码+数据集(高分毕业设计).zip该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 基于python实现的CNN卷积神经网络手写数字识别实验源码+数据集(高分毕业设计).zip该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 基于python实现的CNN卷积神经网络手写数字识别实验源码+数据集(高分毕业设计).zip该项目是个人高分毕业设计项目源码,已获导师指导认可通过,都经过严格调试,确保可以运行!放心下载使用。 基于python实现的CN
2024-04-08 17:05:15 49.59MB 毕业设计 python 手写数字识别
PyTorch中的MeshCNN SIGGRAPH 2019 MeshCNN是用于3D三角形网格的通用深度神经网络,可用于诸如3D形状分类或分割之类的任务。 该框架包括直接应用于网格边缘的卷积,池化和解池层。 该代码由和在支持下编写。 入门 安装 克隆此仓库: git clone https://github.com/ranahanocka/MeshCNN.git cd MeshCNN 安装依赖项: 1.2版。 可选: 用于训练图。 通过新的conda环境conda env create -f environment.yml (创建一个名为meshcnn的环境) SHREC上的3D形状分类 下载数据集 bash ./scripts/shrec/get_data.sh 运行训练(如果使用conda env首先激活env,例如source activate meshcnn ) bash ./scripts/shrec/train.sh 要查看训练损失图,请在另一个终端中运行tensorboard --logdir runs并单击 。 运行测试并导出中间池网格: bas
2024-04-02 16:20:14 3.54MB machine-learning computer-graphics pytorch mesh
1