卷积神经网络CNN手写数字识别,有详细的代码注释和讲解,以及流程介绍,有利于初学者理解,能完整运行,且准确率当10各epochs时为0.985
2021-12-23 15:45:20 9.91MB 卷积神经网络 CNN 手写数字识别
1
tensorflow的猫狗分类
2021-12-22 14:13:19 19KB 神经网络cnn
1
利用细胞神经网络(CNN)模型导出了一种新的彩色图像边缘检测算法。为了充分利用图像中的颜色信息, 在RGB 彩色空间中用Mahalanobis 距离来度量象素之间的差异。为了解决常规边缘提取方法输出二值结果的缺点, 采用可以多值输出的CNN 来进行彩色图像边缘检测。通过Mahalanobis 距离对灰度CNN 度量象素差异的方式进行改进, 使其可以在RGB 彩色空间中进行运算。通过与Sobel、Log 和Canny 等几种边缘检测算子比较, 可以看出新方法的结果更加符合人眼的感知。此外, 在含有丰富细节和微小变化的区域, 新方法可以取得更好的结果。
1
车牌字符数据集-69类-包含汉字-英文-数字 可用于字符识别训练,神经网络cnn训练
2021-12-17 18:03:29 29.75MB 车牌识别 ocr 神经网络 cnn
1
跌倒检测两个流cnn 使用两流卷积神经网络(CNN)和运动历史图像(MHI)进行实时跌倒检测 该存储库包含使用两流CNN的实时跌倒检测模型的代码。 光流被“运动历史图像”(MHI)取代,可以进行实时推断。 utils.py文件包含用于生成数据的实用程序代码,train_model.py文件创建并训练模型,而fall_detection.py文件包含使用FDD数据集上的weights文件夹中的权重运行模型的代码。视频或您的网络摄像头。 有关模型架构,性能以及在不久的将来会出现的演示画面/图片的详细说明。 在生成的数据子集上实现了相当不错的交叉验证错误率。 当前致力于获取更多数据并完善数据生成技术。
2021-12-17 18:00:12 20.83MB real-time keras-tensorflow fall-detection open-cv
1
这是基于 CIFAR10 数据集的 CNN 在 TensorFlow 上的实现,与 上一个 相比增加了 TensorBoard 的实现,可以在浏览器中查看可视化结果。tensorboard 目录存放着用于可视化的日志文件。
2021-12-16 23:12:28 160.64MB TensorFlow CIFAR10 CNN
1
matlab的egde源代码神经网络 mdCNN是MATLAB工具箱,可为2D和3D输入实现卷积神经网络(CNN)。 网络是多维的,内核是3D的,卷积是3D的。 它适用于诸如CT / MRI的体积输入,但也可以支持1D / 2D图像输入。 该框架支持所有主要功能,例如droput,padding,stride,max pooling,L2正则化,动量,交叉熵/ MSE,softmax,回归,分类和批处理归一化层。 框架是完全用matlab编写的,并进行了重大优化。 在培训或测试期间,所有的CPU内核都通过使用Matlab内置多线程技术参与其中。 对于网络,有几个示例被预先配置为运行MNIST,CIFAR10、1D CNN,用于MNIST图像的自动编码器和3dMNIST-MNIST数据集到3D卷的特殊增强。 MNIST演示在几分钟内达到99.2%,CIFAR10演示达到约80% 我在一个用于在3D CT图像中对椎骨进行分类的项目中使用了此框架。 = = = = = = = = = = = = = = = = = = = = 运行MNIST演示:进入文件夹“ Demo / MNIST”,运
2021-12-13 11:30:40 99KB 系统开源
1
针对卷积神经网络(CNN)在通用CPU以及GPU平台上推断速度慢、功耗大的问题,采用FPGA平台设计了并行化的卷积神经网络推断系统。通过运算资源重用、并行处理数据和流水线设计,并利用全连接层的稀疏性设计稀疏矩阵乘法器,大大提高运算速度,减少资源的使用。系统测试使用ORL人脸数据库,实验结果表明,在100 MHz工作频率下,模型推断性能分别是CPU的10.24倍,是GPU的3.08倍,是基准版本的1.56倍,而功率还不到2 W。最终在模型压缩了4倍的情况下,系统识别准确率为95%。
2021-12-10 20:56:03 401KB 卷积神经网络CNN
1
使用CNN进行动作识别 在该项目中,对卷积神经网络(CNN)进行了训练,以使用Pytorch对图像和视频进行分类。 数据集 使用过的UCF101数据http://crcv.ucf.edu/data/UCF101.php但仅接受了10个班级(共101个班级)。 每个剪辑有3帧,每帧为64 * 64像素。 片段的标签位于q3_2_data.mat 。 trLb是训练剪辑的标签,而valLb是验证剪辑的标签。 首先对CNN进行训练以对每个图像进行分类。 然后,使用3D卷积训练CNN,将每个剪辑分类为视频而不是图像 Kaggle比赛 CNN对图像的动作识别-排名第10- http://www.kaggle.com/c/cse512springhw3 CNN对视频的动作识别-排名32- http://www.kaggle.com/c/cse512springhw3video
2021-12-10 15:26:52 55.29MB cnn torch python3 image-classification
1
深度学习是机器学习的一个子集,旨在用类似于人类的逻辑持续分析数据。 它使用称为人工神经网络 (ANN) 的算法的分层结构。 它们主要用于医学诊断,以做出疾病预测、机器人手术和放射治疗等关键决策。 疾病预测包括识别和分类阿尔茨海默病。 它是痴呆症的最常见原因,影响全球约 4600 万人。 该病有几个阶段,分为轻度和重度。 症状包括记忆信息的能力下降、口语和写作能力下降。 许多机器学习算法技术如决策树分类器、独立分量分析、线性判别分析(LDA)被用来根据疾病的阶段预测疾病,但识别信号阶段的精度并不高。 在这项工作中,提出了一种基于深度学习的技术,该技术通过使用卷积神经网络 (CNN) 来提高分类的准确性。 这项工作分析脑电图 (EEG) 信号,使用快速傅立叶变换 (FFT) 提取特征并通过 CNN 对疾病进行分类。
2021-12-09 10:34:18 716KB Alzheimer’s Disease Electroencephalogram
1