使用卷积神经网络 (CNN) 进行智能阿尔茨海默病预测-研究论文

上传者: 38707240 | 上传时间: 2021-12-09 10:34:18 | 文件大小: 716KB | 文件类型: -
深度学习是机器学习的一个子集,旨在用类似于人类的逻辑持续分析数据。 它使用称为人工神经网络 (ANN) 的算法的分层结构。 它们主要用于医学诊断,以做出疾病预测、机器人手术和放射治疗等关键决策。 疾病预测包括识别和分类阿尔茨海默病。 它是痴呆症的最常见原因,影响全球约 4600 万人。 该病有几个阶段,分为轻度和重度。 症状包括记忆信息的能力下降、口语和写作能力下降。 许多机器学习算法技术如决策树分类器、独立分量分析、线性判别分析(LDA)被用来根据疾病的阶段预测疾病,但识别信号阶段的精度并不高。 在这项工作中,提出了一种基于深度学习的技术,该技术通过使用卷积神经网络 (CNN) 来提高分类的准确性。 这项工作分析脑电图 (EEG) 信号,使用快速傅立叶变换 (FFT) 提取特征并通过 CNN 对疾病进行分类。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明