单片机开发0032、基于USB的经络信号的检测系统与设计论文资料.zip
2023-04-27 16:28:19 1.5MB 单片机 USB
1
基于弧邻接矩阵的快速椭圆检测 提出了一种基于弧邻接矩阵的快速椭圆检测方法。 我们已经在某些应用中成功使用了这种方法,例如卫星跟踪,UGV制导和姿态估计。 :smiling_face_with_smiling_eyes: 可以从最新版本中下载Matlab和Python的二进制文件。 1编译我们的代码 我们已经成功地将AMED应用于各种平台(Windows,Ubuntu,ARM)。 用于不同平台的代码可能需要进行一些细微的更改。 1.1 Windows OpenCV> 3.1.0 VS 2015 您可以将所有.h和.cpp文件添加到您的项目中。 不要忘记配置有关OpenCV项目:)。 main.cpp给出了一个从图像中检测椭圆的示例。 AAMED aamed(drows,dcols) 。 卓尔(dcols)必须大于所有已使用图像的行(cols)。 然后,我们可以使用aamed.run_FLED(imgG); 从多个图像中检测椭圆。 非常重要
1
基于yolov7实现卡车识别检测源码+训练好模型(9000多个卡车目标训练)+配置文件+评估指标曲线.zip 模型识别检测类别为1类 ['卡车'] 【模型介绍】 1.模型使用的是yolov7-tiny.yaml、hyp.scratch.custom.yam训练 2.模型使用高性能显卡+高质量数据集训练迭代200次得到,识别检测效果和评估指标曲线都不错,实际项目所用,不需要二次训练或者微调,可用作实际项目、课程实验作业、模型效果对比、毕业设计、课程设计等,请放心下载使用!
跌倒检测识别Android Demo, 跌倒检测和识别1:跌倒检测数据集(含下载链接):https://blog.csdn.net/guyuealian/article/details/130184256 跌倒检测和识别2:YOLOv5实现跌倒检测(含跌倒检测数据集和训练代码):https://blog.csdn.net/guyuealian/article/details/130250738 跌倒检测和识别3:Android实现跌倒检测(含源码,可实时跌倒检测):https://blog.csdn.net/guyuealian/article/details/130250824 跌倒检测和识别4:C++实现跌倒检测(含源码,可实时跌倒检测):https://blog.csdn.net/guyuealian/article/details/130250838
2023-04-26 13:48:25 50.44MB android 跌倒检测 跌倒识别 摔倒识别
1
改训练集属于负样本,用于人脸检测时;
2023-04-26 02:05:11 105.8MB opencv人脸库
1
伪装物体检测(CVPR2020-Oral) 作者:,,,,,。 0.前言 欢迎加入COD社区! 我们在微信中创建了一个群聊,您可以通过添加联系人(微信ID:CVer222)来加入。 请附上您的从属关系。 该存储库包括详细的介绍,强大的基准(搜索和识别网,SINet)以及用于伪装目标检测(COD)的一键评估代码。 有关伪装物体检测的更多信息,请访问我们的并阅读 / 。 如果您对我们的论文有任何疑问,请随时通过电子邮件与或。 如果您使用SINet或评估工具箱进行研究,请引用本文( ) 0.1。 :fire: 消息 :fire: [2020/10/22] :collision: 可以通过电子邮件( )提供培训代码。 请提供您的姓名和机构。 请注意,该代码只能用于研究目的。 [2020/11/21]已更新评估工具:Bi_cam(cam> threshold)= 1-> Bi_cam(cam> = threshold
1
matlab叶片农害虫害侵害检测[GUI,注释]
2023-04-25 19:44:51 23.89MB matlab 农害虫害检测
1
针对传统的电压跌落d-q检测算法和Hilbert检测算法在补偿快速性和抗干扰性方面存在矛盾的问题,提出了一种将d-q检测算法与Hilbert检测算法相结合的电压跌落检测新算法:对电网侧电压信号采样后,经d-q检测单元得到谐波补偿波形;然后滤除3次谐波,滤波后的信号再经Hilbert检测单元得到电压幅值补偿波形;叠加该2种补偿波形可确定最终的补偿波形。仿真结果表明,该检测算法对于含3次谐波的电压跌落补偿效果较好,兼具补偿快速性和抗干扰能力。
1
运动车辆跟踪检测系统(每车速度,车道,均速,车流量,密度,设置红绿灯,界面GUI,步骤详细)(Matlab)
1
SCUT HEAD人头检测数据集包含4405张标记了111251个人头的图像。数据集分两部分,第一部分2000张图像源自大学教室的监控视频,第二部分2405张图像爬取自网络,数据集图像中的人头均有边界框和注释。 数据标注经用xmin、ymin、xmax和ymax坐标标记了每个可视头部,并确保注释覆盖整个头部,包括部分,但没有额外的背景。A部分和B部分分为培训和测试部分。数据集遵循Pascal VOC标准
2023-04-24 19:31:11 448.26MB 人头检测数据集 SCUT_HEAD SCUT_HEAD_VOC
1