基于yolov7实现卡车识别检测源码+训练好模型(9000多个卡车目标训练)+配置文件+评估指标曲线.zip

上传者: deeplearning_ | 上传时间: 2023-04-26 14:22:22 | 文件大小: 97.63MB | 文件类型: ZIP
基于yolov7实现卡车识别检测源码+训练好模型(9000多个卡车目标训练)+配置文件+评估指标曲线.zip 模型识别检测类别为1类 ['卡车'] 【模型介绍】 1.模型使用的是yolov7-tiny.yaml、hyp.scratch.custom.yam训练 2.模型使用高性能显卡+高质量数据集训练迭代200次得到,识别检测效果和评估指标曲线都不错,实际项目所用,不需要二次训练或者微调,可用作实际项目、课程实验作业、模型效果对比、毕业设计、课程设计等,请放心下载使用!

文件下载

资源详情

[{"title":"( 109 个子文件 97.63MB ) 基于yolov7实现卡车识别检测源码+训练好模型(9000多个卡车目标训练)+配置文件+评估指标曲线.zip","children":[{"title":"Dockerfile <span style='color:#111;'> 821B </span>","children":null,"spread":false},{"title":"YOLOv7trt.ipynb <span style='color:#111;'> 1.69MB </span>","children":null,"spread":false},{"title":"YOLOv7onnx.ipynb <span style='color:#111;'> 1.47MB </span>","children":null,"spread":false},{"title":"end2end_tensorrt.ipynb <span style='color:#111;'> 976.17KB </span>","children":null,"spread":false},{"title":"end2end_onnxruntime.ipynb <span style='color:#111;'> 505.47KB </span>","children":null,"spread":false},{"title":"visualization.ipynb <span style='color:#111;'> 482.29KB </span>","children":null,"spread":false},{"title":"instance.ipynb <span style='color:#111;'> 476.94KB </span>","children":null,"spread":false},{"title":"keypoint.ipynb <span style='color:#111;'> 465.12KB </span>","children":null,"spread":false},{"title":"reparameterization.ipynb <span style='color:#111;'> 28.32KB </span>","children":null,"spread":false},{"title":"train_batch6.jpg <span style='color:#111;'> 333.43KB </span>","children":null,"spread":false},{"title":"train_batch7.jpg <span style='color:#111;'> 320.86KB </span>","children":null,"spread":false},{"title":"train_batch8.jpg <span style='color:#111;'> 309.55KB </span>","children":null,"spread":false},{"title":"train_batch3.jpg <span style='color:#111;'> 295.21KB </span>","children":null,"spread":false},{"title":"train_batch0.jpg <span style='color:#111;'> 293.20KB </span>","children":null,"spread":false},{"title":"train_batch4.jpg <span style='color:#111;'> 279.19KB </span>","children":null,"spread":false},{"title":"train_batch2.jpg <span style='color:#111;'> 272.57KB </span>","children":null,"spread":false},{"title":"train_batch9.jpg <span style='color:#111;'> 272.01KB </span>","children":null,"spread":false},{"title":"train_batch1.jpg <span style='color:#111;'> 269.50KB </span>","children":null,"spread":false},{"title":"train_batch5.jpg <span style='color:#111;'> 265.39KB </span>","children":null,"spread":false},{"title":"test_batch1_labels.jpg <span style='color:#111;'> 252.57KB </span>","children":null,"spread":false},{"title":"test_batch1_pred.jpg <span style='color:#111;'> 251.50KB </span>","children":null,"spread":false},{"title":"test_batch2_pred.jpg <span style='color:#111;'> 250.12KB </span>","children":null,"spread":false},{"title":"test_batch2_labels.jpg <span style='color:#111;'> 247.27KB </span>","children":null,"spread":false},{"title":"test_batch0_pred.jpg <span style='color:#111;'> 211.36KB </span>","children":null,"spread":false},{"title":"test_batch0_labels.jpg <span style='color:#111;'> 210.65KB </span>","children":null,"spread":false},{"title":"horses_prediction.jpg <span style='color:#111;'> 151.45KB </span>","children":null,"spread":false},{"title":"horses.jpg <span style='color:#111;'> 130.37KB </span>","children":null,"spread":false},{"title":"LICENSE.md <span style='color:#111;'> 34.33KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 11.64KB </span>","children":null,"spread":false},{"title":"pose.png <span style='color:#111;'> 347.06KB </span>","children":null,"spread":false},{"title":"results.png <span style='color:#111;'> 211.42KB </span>","children":null,"spread":false},{"title":"performance.png <span style='color:#111;'> 164.53KB </span>","children":null,"spread":false},{"title":"mask.png <span style='color:#111;'> 101.60KB </span>","children":null,"spread":false},{"title":"PR_curve.png <span style='color:#111;'> 81.04KB </span>","children":null,"spread":false},{"title":"R_curve.png <span style='color:#111;'> 77.46KB </span>","children":null,"spread":false},{"title":"confusion_matrix.png <span style='color:#111;'> 77.13KB </span>","children":null,"spread":false},{"title":"F1_curve.png <span style='color:#111;'> 74.35KB </span>","children":null,"spread":false},{"title":"P_curve.png <span style='color:#111;'> 74.25KB </span>","children":null,"spread":false},{"title":"yolov7.pt <span style='color:#111;'> 72.09MB </span>","children":null,"spread":false},{"title":"last.pt <span style='color:#111;'> 11.71MB </span>","children":null,"spread":false},{"title":"best.pt <span style='color:#111;'> 11.71MB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 82.41KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 73.19KB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 54.91KB </span>","children":null,"spread":false},{"title":"train_aux.py <span style='color:#111;'> 36.08KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 36.07KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 35.75KB </span>","children":null,"spread":false},{"title":"yolo.py <span style='color:#111;'> 35.36KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 20.41KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 16.57KB </span>","children":null,"spread":false},{"title":"wandb_utils.py <span style='color:#111;'> 15.88KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 15.10KB </span>","children":null,"spread":false},{"title":"experimental.py <span style='color:#111;'> 10.04KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 8.76KB </span>","children":null,"spread":false},{"title":"detect.py <span style='color:#111;'> 8.62KB </span>","children":null,"spread":false},{"title":"autoanchor.py <span style='color:#111;'> 6.98KB </span>","children":null,"spread":false},{"title":"export.py <span style='color:#111;'> 6.64KB </span>","children":null,"spread":false},{"title":"add_nms.py <span style='color:#111;'> 5.51KB </span>","children":null,"spread":false},{"title":"google_utils.py <span style='color:#111;'> 4.64KB </span>","children":null,"spread":false},{"title":"hubconf.py <span style='color:#111;'> 3.47KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"resume.py <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"log_dataset.py <span style='color:#111;'> 815B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 6B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 6B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 6B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 5B </span>","children":null,"spread":false},{"title":"userdata.sh <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"get_coco.sh <span style='color:#111;'> 820B </span>","children":null,"spread":false},{"title":"mime.sh <span style='color:#111;'> 780B </span>","children":null,"spread":false},{"title":"results.txt <span style='color:#111;'> 29.49KB </span>","children":null,"spread":false},{"title":"操作运行说明.txt <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 950B </span>","children":null,"spread":false},{"title":"additional_requirements.txt <span style='color:#111;'> 105B </span>","children":null,"spread":false},{"title":"yolov7-e6e.yaml <span style='color:#111;'> 9.41KB </span>","children":null,"spread":false},{"title":"yolov7-e6e.yaml <span style='color:#111;'> 9.27KB </span>","children":null,"spread":false},{"title":"yolov7-d6.yaml <span style='color:#111;'> 6.10KB </span>","children":null,"spread":false},{"title":"yolov7-d6.yaml <span style='color:#111;'> 5.96KB </span>","children":null,"spread":false},{"title":"yolov7-e6.yaml <span style='color:#111;'> 5.36KB </span>","children":null,"spread":false},{"title":"yolov7-e6.yaml <span style='color:#111;'> 5.22KB </span>","children":null,"spread":false},{"title":"yolov7-w6.yaml <span style='color:#111;'> 4.67KB </span>","children":null,"spread":false},{"title":"yolov7-w6.yaml <span style='color:#111;'> 4.54KB </span>","children":null,"spread":false},{"title":"yolov7-tiny.yaml <span style='color:#111;'> 4.51KB </span>","children":null,"spread":false},{"title":"yolov7-tiny.yaml <span style='color:#111;'> 4.51KB </span>","children":null,"spread":false},{"title":"yolov7x.yaml <span style='color:#111;'> 4.39KB </span>","children":null,"spread":false},{"title":"yolov7x.yaml <span style='color:#111;'> 4.38KB </span>","children":null,"spread":false},{"title":"yolov7.yaml <span style='color:#111;'> 3.91KB </span>","children":null,"spread":false},{"title":"yolov7.yaml <span style='color:#111;'> 3.90KB </span>","children":null,"spread":false},{"title":"yolov7-tiny-silu.yaml <span style='color:#111;'> 2.97KB </span>","children":null,"spread":false},{"title":"yolor-w6.yaml <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"yolor-p6.yaml <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"yolor-d6.yaml <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"yolor-e6.yaml <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"yolor-csp-x.yaml <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"yolor-csp.yaml <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"yolov4-csp.yaml <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"yolov3-spp.yaml <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false},{"title":"yolov3.yaml <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"x50-csp.yaml <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"coco.yaml <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明