用Tensorflow搭建CNN卷积神经网络,实现MNIST手写数字识别-附件资源
2021-12-13 09:19:36 106B
1
肺炎是一种严重威胁人类健康的疾病,及时、准确地检测出肺炎可以尽早帮助患者接受治疗。因此,提出了一种基于YOLOv3改进的Multi branch YOLO检测算法。用多分枝膨胀卷积输出的特征代替YOLOv3中不同层级的特征进行检测,在多分枝卷积神经网络中引入Boosting思想,并使用最大化熵方法优化网络。将每个卷积分枝视为一个弱分类器,通过最大化熵方法使每个分枝学习到相近的检测能力,避免多分枝卷积模型退化成单分枝卷积模型。基于北美放射学会提供的肺部X射线影像进行实验,结果表明,该算法在实验数据集上的检测准确率高于其他目标检测算法。
2021-12-12 17:06:46 5.23MB 目标检测 肺炎检测 医学图像 卷积神经
1
技术支援 pytorch,卷积神经网络,深度学习
2021-12-12 12:23:03 254KB Python
1
在机器视觉和其他很多问题上,卷积神经网络取得了当前最好的效果,它的成功促使我们思考一个问题,卷积神经网络为什么会这么有效?在本文中,SIGAI将为大家分析卷积神经网络背后的奥秘。
2021-12-11 23:18:17 1.04MB 卷积神经网络 人工智能 机器学习 SIGAI
1
计算机视觉技术大量应用于自动驾驶系统,主要解决物体识别与物体分类问题,本文根据任务提出了一种轻量化的神经网络结构.为解决训练数据规模不足的问题,采用了改进型数据增强算法,使训练数据成倍增加.同时为解决使用数据生成器作为验证集,无法使用tensorboard的问题,提出了解决方案,通过卷积网络可视化方法详细研究了神经网络处理图像信息的原理并提出了优化方法.训练后的模型在验证集上准确率达到了97.5%,满足了自动驾驶系统对分类任务准确率的要求.
1
我就废话不多说了,大家还是直接看代码吧! model = keras.models.Sequential([ #卷积层1 keras.layers.Conv2D(32,kernel_size=5,strides=1,padding=same,data_format=channels_last,activation=tf.nn.relu,kernel_regularizer=keras.regularizers.l2(0.01)), #池化层1 keras.layers.MaxPool2D(pool_size=2,strides=2,padding=same), #卷积层
2021-12-11 12:35:12 67KB AS ens keras
1
DBCNN-Pytorch 使用深双线性卷积神经网络进行盲图像质量评估的实验性PyTorch实现。 目的 考虑到PyTorch在学术界的受欢迎程度,我们希望此回购协议可以帮助IQA的研究人员。 此存储库将用作集成IQA研究的先进技术的活动代码库。 要求 PyTorch 0.4+ Python 3.6 默认设置下的用法 python DBCNN.py 如果要重新训练SCNN,仍然需要Matlab和原始存储库来生成合成失真的图像。 python SCNN.py 引文 @article {zhang2020blind, title = {使用深双线性卷积神经网络进行盲图像质量评估}, 作者= {张维霞和马克德和闫家加邓,德祥和王舟}, journal = {IEEE视频技术电路和系统的交易}, 音量= {30}, 数字= {1}, 页数= {36--47}, 年= {2020} } 致谢
2021-12-11 11:28:44 4.59MB python deep-neural-networks deep-learning pytorch
1
里面包含基于TensorFlow的mnist数据集卷积神经网络代码,从数据提取,到精度测试都有,适合初学者观看。
1
针对卷积神经网络(CNN)在通用CPU以及GPU平台上推断速度慢、功耗大的问题,采用FPGA平台设计了并行化的卷积神经网络推断系统。通过运算资源重用、并行处理数据和流水线设计,并利用全连接层的稀疏性设计稀疏矩阵乘法器,大大提高运算速度,减少资源的使用。系统测试使用ORL人脸数据库,实验结果表明,在100 MHz工作频率下,模型推断性能分别是CPU的10.24倍,是GPU的3.08倍,是基准版本的1.56倍,而功率还不到2 W。最终在模型压缩了4倍的情况下,系统识别准确率为95%。
2021-12-10 20:56:03 401KB 卷积神经网络CNN
1
这项研究工作部署了一种很有前景的方法来识别手写英文字母和神经数字。 在这项研究工作中,分析和研究了基于深度神经网络的卷积神经网络模型在 MNIST 数据集上的性能。 该标准化数据集包括手写文本,包括数字和字母。 在各种实验中,CNN 的参数在多个实例中配置,以分析其在不同环境下的性能。 虽然主要配置集包括误差函数、激活函数、隐藏层数、时期数、各种优化技术以解决凸和非凸可优化目标函数。 实验结果证明了其与现有艺术相当的有前途的价值。 所讨论模式的结论性能在具有交叉熵误差函数的 sigmoid 激活函数下达到了 99.65 的最高分类率,并且首先将性能延迟评估为不同隐藏层数的度量。
2021-12-10 15:37:25 413KB 论文研究
1