基于YOLOv3改进的肺炎检测算法

上传者: 38717574 | 上传时间: 2021-12-12 17:06:46 | 文件大小: 5.23MB | 文件类型: -
肺炎是一种严重威胁人类健康的疾病,及时、准确地检测出肺炎可以尽早帮助患者接受治疗。因此,提出了一种基于YOLOv3改进的Multi branch YOLO检测算法。用多分枝膨胀卷积输出的特征代替YOLOv3中不同层级的特征进行检测,在多分枝卷积神经网络中引入Boosting思想,并使用最大化熵方法优化网络。将每个卷积分枝视为一个弱分类器,通过最大化熵方法使每个分枝学习到相近的检测能力,避免多分枝卷积模型退化成单分枝卷积模型。基于北美放射学会提供的肺部X射线影像进行实验,结果表明,该算法在实验数据集上的检测准确率高于其他目标检测算法。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明