实现步骤: 分析训练数据,提取图片HOG特征。 训练分类器 应用滑动窗口(sliding windows)实现车辆检测 应用热力图(heatMap)过滤错误检测(false positive) 分析训练数据,提取图片HOG特征 训练数据为64x64x3的RBG图片,包含车辆与非车辆图片两类,车辆图片8792张,非车辆图片8968张。 车牌图片数据预处理操作 数据集中的照片需要进行车牌定位、二值化、调整角度、最后分割成单个字符才可用于模型训练的字符集。将分割好的字符图片分别存放在对应的文件夹中,以便后续训练工作。在进行车牌定位时,考虑不同拍摄环境下所拍摄的图片质量参差不齐,传统的利用边缘检测算法进行定位的方法会出现较大偏差,所以利用颜色再定位的方法,对Sobel定位后的区域进行边界缩小,提高定位的准确性. 车牌字符分割以及特征提取字符分割过程包括对定位到的车牌图块灰度化、二值化、投影分析、去上下边框、根据阈值进行分割,得到用于识别的字符块。分割后的图块需要进行特征提取,才可以用于SVM训练与识别 SVM算法在车牌识别中的应用 支持向量机(SVM)是一种建立在统计学习理论基础上的分类方法
2023-10-26 14:21:58 13.55MB opencv 支持向量机 数据集
1
twitter_sentiment_bert_scikit Twitter美国航空数据集情感分析(情感分析),使用Bert句子编码作为特征,实现了SVM,XGBoost,RandomForest(随机森林)等多个分类算法,从而进行了交叉验证。 数据来自 预安装 我们在Python 3环境中运行该项目,建议您使用Anaconda 3通过以下脚本安装所需的软件包。 当然,您可以使用pip进行安装。 conda create -n tweet_sentiment -c anaconda python=3.7 numpy scikit-learn xgboost pandas tensorflo
1
支持向量机vc++实现.一个很好的分类系统 .可以分类文本
2023-10-15 08:05:51 1.53MB svm 文本分类
1
MATLAB人脸识别(Pca和pca+Bp两方法,提升识别率)[[源码框架]]
2023-09-23 12:08:37 3.33MB
1
探讨了基于经验模态分解(EMD)和支持向量机(SVM)的提升机刚性罐道故障诊断方法。首先利用EMD对采集的振动信号进行分解以获得内蕴模态函数(IMF),并结合小波降噪对其高频分量进行降噪。然后,提取降噪后IMF分量中的典型信息作为故障特征向量,使用SVM进行故障模式识别。
2023-09-10 22:45:11 300KB 刚性罐道 故障诊断 模式识别
1
1. 对应视频链接:https://www.bilibili.com/video/BV1PB4y167et/?vd_source=cf212b6ac033705686666be12f69c448 2. Matlab实现支持向量机的数据回归预测(完整源码和数据) 3. 多变量输入,单变量输出,数据回归预测 4. 评价指标包括:R2、MAE、MSE、RMSE 5. 包括拟合效果图和散点图 6. Excel数据,暂无版本限制,推荐2018B及以上版本 7. 其他代码连接:https://docs.qq.com/sheet/DRXBpdVRydFRHTXlB?tab=BB08J2&_t=1667389129635&u=96322ede66974c7097f1238bbc559fdc 注:采用 Libsvm 工具箱(无需安装,可直接运行),仅支持 Windows 64位系统
2023-08-31 08:33:38 59KB matlab 支持向量机 回归 机器学习
1
图像相似度 使用Resnet50+KNN在数据集中查找相似图像以获取新图像。 为了解决curse of dimensionality使用PCA来降低特征的维数。 Resnet50(在imageNet上训练) 在没有toplayer的情况下从keras创建Resnet50,以获取卷积特征(2048维)作为输出,而不是图像分类概率。 为数据集的每个图像提取卷积特征(Feature_size:[number_images,2048])。 KNN(不是分类问题) 将最近邻算法拟合到从数据集中提取的特征 提取测试图像(新)的卷积特征,并计算测试图像与数据集的每个图像之间的距离(image_Similarity)。 PCA 将PCA应用于提取的特征并减小尺寸。 使最近邻算法适合新功能
2023-08-30 14:42:39 11.3MB knn resnet-50 imagesimilarity JupyterNotebook
1
层次分析matlab代码PCA 使用Matlab进行空间主成分分析(SPCA 1.1):Tarik Benkaci&N. Dechemi(2020)注:该软件包使用Pearson的相关系数计算PCA,此外(SPCA 1.1)还通过三种方法对观测值进行聚类:KNN, K均值和层次聚类。 根据您的语言:法语或英语,如果要英语版本,请转到example_eng_2.m代码并运行:然后代码显示:数据的“变量的基本特征”:和pca的计算:相关矩阵(使用c.pearson )并计算特征向量和特征值。 在第二部分中:该代码显示pca的主要结果。 该软件包根据以下三种方法显示变量的聚类:KNN,K-means和分层聚类(HC)
2023-08-10 09:17:26 508KB 系统开源
1
1. 对应视频链接:https://www.bilibili.com/video/BV1xa411K7aF/?vd_source=cf212b6ac033705686666be12f69c448 2. Matlab实现支持向量机的数据分类预测(完整源码和数据) 3. 多变量输入,单变量输出(类别),数据分类预测 4. 评价指标包括:准确率 和 混淆矩阵 5. 包括拟合效果图 和 混淆矩阵 6. Excel数据,要求 Matlab 2018B及以上版本 7. 其他代码连接:https://docs.qq.com/sheet/DRXBpdVRydFRHTXlB?tab=BB08J2&_t=1667389129635&u=96322ede66974c7097f1238bbc559fdc 注:采用 Libsvm 工具箱(无需安装,可直接运行),仅支持 Windows 64位系统
2023-07-19 20:56:35 118KB matlab 支持向量机 机器学习 深度学习
1
Learning with Kernels - Support Vector Machines, Regularization, Optimization, and Beyond
2023-07-08 00:08:17 39.14MB svm,Kernels
1