针对顶板冒落带高度问题提出新的预计模型,通过搜集众多矿井的实测数据,在支持向量机理论基础上建立预计模型。采用果蝇优化算法对预计模型进行优化训练,建立FOA-SVM预计模型,利用实测数据对模型的预计结果进行检验,预计结果较为准确,比PSO-SVM模型和GA-SVM模型结果稳定性好计算精度高。
1
IGWO-SVM:改良的灰狼优化算法改进支持向量机。 采用三种改进思路:两种Logistic和Tent混沌映射和采用DIH策略。 采用基于DIH维度学习的狩猎搜索策略为每只狼构建邻域,增强局部和全局搜索能力,收敛速度比GWO更快,适用于paper。
2024-01-05 09:09:08 376KB 支持向量机
1
针对滚动轴承传统上侧重某一时间点的故障类型诊断问题,提出一种注重评估全寿命周期中性能退化趋势的指标提取方法。利用EEMD分解初始信号得到诸多IMF分量,采用相关系数准则提取相关程度高的IMF分量作为有效信息进行重构,实现信号的降噪处理。对降噪信号分别建立时域、频域和时频域共37个性能退化指标,剔除敏感度太弱和信息过于嘈杂等不适合表征滚动轴承退化趋势指标后,利用PCA法进行加权融合剩余的多域性能退化指标,最终得到能全面表征性能退化趋势指标。对Cincinnati大学采集的全寿命周期振动信号进行实验分析,结果
2023-12-27 15:17:19 46KB 自然科学 论文
1
基于支持向量机SVM的数据分类预测,SVM分类预测,多特征输入模型。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2023-12-21 14:34:09 738KB 支持向量机
1
MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测 基本介绍 1.MATLAB实现基于SVM-Adaboost支持向量机结合AdaBoost多输入分类预测; 2.运行环境为Matlab2018b; 3.输入多个特征,分四类预测; 4.data为数据集,excel数据,前多列输入,最后输出四类标签,主程序运行即可,所有文件放在一个文件夹; 5.可视化展示分类准确率。 模型描述 SVM-Adaboost支持向量机结合AdaBoost多输入分类预测是一种基于机器学习和集成学习的预测方法,其主要思想是将支持向量机(SVM)和AdaBoost算法相结合,通过多输入模型进行预测。 具体流程如下: 数据预处理:对原始数据进行清洗、归一化和分割等预处理步骤。 特征提取:利用SVM模型对数据进行特征提取,得到多个特征向量作为AdaBoost算法的输入。 AdaBoost模型训练:利用AdaBoost算法对多个特征向量进行加权组合,得到最终的预测结果。 模型评估:对预测结果进行评估。 模型优化:根据评估结果对模型进行优化,可以尝试调整模型的参数、改变AdaBoos
2023-12-11 12:48:07 1KB matlab 支持向量机
1
这里只做演示,都是获得老师高度认可的设计,有完整数据库,源码和文档,简单配置一下就可以用
2023-11-27 22:37:58 4.74MB 毕业设计 Python Django
1
例程(11)-用PCA扩展外部中断 例程(11)-用PCA扩展外部中断 例程(11)-用PCA扩展外部中断
2023-11-20 15:00:22 12KB
1
模式识别课程/Matlab/实现PCA降维操作
2023-11-10 11:08:38 674B pca降维 matlab
1
本文实例为大家分享了SVM手写数字识别功能的具体代码,供大家参考,具体内容如下 1、SVM手写数字识别 识别步骤: (1)样本图像的准备。 (2)图像尺寸标准化:将图像大小都标准化为8*8大小。 (3)读取未知样本图像,提取图像特征,生成图像特征组。 (4)将未知测试样本图像特征组送入SVM进行测试,将测试的结果输出。 识别代码: #!/usr/bin/env python import numpy as np import mlpy import cv2 print 'loading ...' def getnumc(fn): '''返回数字特征''' fnimg = cv2.i
2023-11-06 16:33:05 144KB python python算法
1
为了提高语音情感识别系统的识别准确率,在传统支持向量机(SVM)方法的基础上,提出了一种基于主成分分析法(PCA)的多级SVM情感分类算法。首先将容易区分的情感分开,针对混淆度大且不能再利用多级分类策略直接进行区分的情感,采用PCA进行特征降维,然后逐级地判断出输入语音所属的情感类型。与传统基于SVM分类算法的语音情感识别相比,本方法可将七种情感的平均识别率提高5.05%,并且特征维度可降低58.3%,从而证明了所提出方法的正确性与有效性。
2023-11-05 16:01:02 891KB
1