The least course set based on curriculum visions of computing disciplines
2021-02-09 09:06:36 69KB 研究论文
1
非线性最小二乘教程
2021-02-04 13:09:01 540KB slam 数学 数学建模
1
AWS最低特权 使用AWS X-Ray达到最低特权。 该项目旨在简化从X-Ray收集资源使用信息的过程,并达到给定应用程序的“最低特权”安全态势。 AWS X-Ray提供有关通过AWS开发工具包执行的服务API调用的深入信息。 使用此信息,可以构建应用程序实际使用的AWS资源和操作的配置文件,并生成反映该信息的策略文档。 该项目当前专注于AWS Lambda,但可以轻松地应用于利用AWS Roles的其他应用程序(EC2或ECS上的应用程序)。 要求 NodeJS 6以上 安装 npm install -g aws-least-privilege 这将安装命令行工具: xray-privilege-scan 。 凭证设定 cli工具在内部使用AWS Node.js SDK,并将使用与该SDK相同的凭证机制。 它将自动使用AWS共享凭证文件中的凭证。 有关更多详细信息,请参阅: 。 用于运行cli的用户应具有AWS托管策略: AWSXrayReadOnlyAccess 。 如果使用比较模式(请参见下文),则以下串联策略应附加到用户: { " Version " : " 2
2021-01-30 20:10:03 193KB aws lambda aws-lambda serverless
1
通过移动的最小二乘法改变和自定义的控制点操作图片。Image Deformation Using Moving Least Squares 移动最小二乘法 图像变形(matlab实现)
2020-01-03 11:35:28 1.06MB 移动最小二乘
1
线性拟合的matlab仿真代码,包含数据点的收集、一般最小二乘算法、正交回归算法,画图等。其中数据点的收集还包括曲线的数据点收集。
2020-01-03 11:30:35 3KB linear regressio least square
1
Image Deformation Using Moving Least Squares 算法的matlab实现。通过移动的最小二乘法改变和自定义的控制点操作图片。
2019-12-21 22:05:49 1.13MB MLS Deformation
1
regression shrinkage and selection via the lasso,robert tibshirani最初关于lasso的论文。
2019-12-21 20:27:30 1.95MB lasso least square
1
Miroslav Balda为非线性最小误差优化写的文档,包括梯度法,牛顿法,LM法,QUASI-NEWTON等
2019-12-21 20:19:36 360KB 非线性优化
1
Matlab下用最小二乘法实现椭圆拟合,适合初学者,希望对大家有帮助!
2019-12-21 19:57:58 3KB Matlab 椭圆拟合 最小二乘法
1
This book focuses on Least Squares Support Vector Machines (LS-SVMs) which are reformulations to standard SVMs. LS-SVMs are closely related to regularization networks and Gaussian processes but additionally emphasize and exploit primal-dual interpretations from optimization theory. The authors explain the natural links between LS-SVM classifiers and kernel Fisher discriminant analysis. Bayesian inference of LS-SVM models is discussed, together with methods for imposing sparseness and employing robust statistics. The framework is further extended towards unsupervised learning by considering PCA analysis and its kernel version as a one-class modelling problem. This leads to new primal-dual support vector machine formulations for kernel PCA and kernel CCA analysis. Furthermore, LS-SVM formulations are given for recurrent networks and control. In general, support vector machines may pose heavy computational challenges for large data sets. For this purpose, a method of fixed size LS-SVM is proposed where the estimation is done in the primal space in relation to a Nyström sampling with active selection of support vectors. The methods are illustrated with several examples.
2009-02-19 00:00:00 12.09MB ebook svm
1