Helstrom量子质心分类器 Helstrom量子质心(HQC)分类器是一种受量子启发的监督分类方法,用于具有二进制类的数据(即,仅具有2类的数据)。 受到量子启发的意思是指采用和利用量子理论的分类过程。 它受到可观察到的量子Helstrom的启发,该量子行为作用于量子模式之间的可区分性,而不是数据集的经典模式。 HQC分类器基于Giuseppe Sergioli,Roberto Giuntini和Hector Freytes在他们的论文中进行的研究: Sergioli G, Giuntini R, Freytes H (2019) A new quantum approach to
2021-12-11 01:13:27 26KB python classifier data-science machine-learning
1
网络流量异常的检测和分类 实验基于 数据集的版本。 1.先决条件 1.1。 安装项目依赖项 不 姓名 版本 描述 1个 3.8.8 程式语言 2个 0.24.1 Python机器学习工具 3 1.19.5 Python科学计算工具 4 1.2.2 Python中的数据分析和数据处理工具 5 3.3.4 用Python可视化 6 0.11.1 统计数据可视化 7 5.8.0 跨平台库,用于检索Python中正在运行的进程和系统利用率(CPU,内存,磁盘,网络,传感器)的信息 8 0.3.7 可视化库 9 -- 用于模型序列化的Python对象序列化 1.2。 下载并提取数据集 下载的较轻版本(存档大小-8.8 GB) 较轻的版本仅包含带标签的流,而没有pcaps文件 提取档案(大小-大约44 GB) 2.安装项目 克隆此仓库 安装缺少的库 打开config.py并
1
svm_cvx CVX库用于实现硬边距,软边距和非线性内核支持向量机。 数学描述和解释可以在“ SVM应用程序-凸优化最终报告.pdf”中找到。 使用CVX进行ECE 273的SVM实现-凸优化类
2021-11-28 20:49:06 2.2MB svm cvx svm-classifier MATLAB
1
使用python,基于darknet模型,对昆虫进行识别的深度学习代码
2021-11-25 13:23:13 39.79MB 深度学习 yolo 图像识别
电影流派分类器 使用多类分类算法和逻辑回归,根据剧情文本摘要对电影类型进行分类。<
2021-11-23 17:32:51 91.59MB JupyterNotebook
1
AI侍酒师 项目案例 AI能否准确预测红酒质量等级? 无论如何,品酒师的舌头如何规范葡萄酒的化学成分,质量是什么? 让我们尝试使用机器学习方法来回答这个问题,在该方法中,各种分类器算法将尝试发现葡萄酒评级过程中的所有模式。 作为项目的最后一部分,让我们构建一些人工侍酒师,并让他们处理实际的葡萄酒样品。 一切都以python flask应用程序的形式出现。 应用程序结构 Flask App有4个视图,每个视图代表机器学习过程的不同阶段。 每个部分都以可下载的代码模板结尾。 第1部分-数据集概述 首先,我们将仔细研究数据集。 使用numpy,pandas,seaborn和scikit-learn: 第2部分-建筑分类器 在下一步中,我们将在选择最佳拟合算法的同时建立分类器的基础: 第3部分-拟合分类器 现在,该是测试我们的分类器并查看其效果的时候了: 第4部分-对红酒进行评分 让我向您介绍我
2021-11-15 17:11:45 13.01MB jquery classifier flask machine-learning
1
项目概况 欢迎来到AI Nanodegree中的卷积神经网络(CNN)项目! 在这个项目中,您将学习如何建立一个可在Web或移动应用程序中使用的管道,以处理用户提供的真实世界的图像。 给定狗的图像,您的算法将确定犬的品种的估计值。 如果提供了人像,则代码将识别出类似狗的品种。 在探索最新的CNN模型进行分类的同时,您还将就应用程序的用户体验做出重要的设计决策。 我们的目标是,通过完成本实验,您将了解将一系列旨在在数据处理管道中执行各种任务的模型拼接在一起所面临的挑战。 每个模型都有其优点和缺点,设计一个实际应用程序常常需要解决许多问题,而没有一个完美的答案。 但是,您不完善的解决方案仍会带来有趣的用户体验! 项目说明 指示 克隆存储库,然后导航到下载的文件夹。 git clone https://github.com/udacity/dog-project.git cd dog-pro
2021-10-31 16:55:34 5.98MB HTML
1
ML-ATIC 在 API的帮助下,基于机器学习方法的异常流量识别分类器。 这是我的本科毕业设计代码。 而且代码中会有很多错误。 无论如何,在训练模型和评估中可能有一些不合适的方法。 欢迎您发现它。 有任何疑问,请给我发电子邮件! 要求 Java SE 7 Maylib中的Jars 来自KDDCUP99的数据,我使用受计算资源限制的10%版本。 安装 将TrainAndTest.zip和Model.zip解压缩到数据文件中。 通过添加原始数据的头对Train.arff和Test.arff进行了预处理。 如果有兴趣,您可以打开它,然后进行探索。 Java文件中有一些字符编码问题,它们是UTF-8和GB18030。 并可能在注释中导致一些错误。 文件模型包含一些训练有素的模型,可以直接使用。 您还可以通过运行BuildTree.java,TestBP.java和TestLibs
1
CIFAR-100-图像分类器
2021-10-27 11:58:54 7.67MB JupyterNotebook
1