直流神经网络 Conneau提出的用于文本分类的超深度卷积神经网络的Tensorflow实现。 现在已使用Tensorflow 2和tf.keras支持正确重新实现了VDCNN的体系结构。 根据实施一个简单的培训界面。 随意贡献其他实用程序,例如TensorBoard支持。 旁注,如果您是NLP文本分类的新手: 请检出新的SOTA NLP方法,例如或 。 检出以获得更好的动态绘图和数据集对象支持。 当前的VDCNN实现也非常容易移植到PyTorch上。 先决条件 Python3 Tensorflow> = 2.0 张量流数据集 麻木 数据集 原始论文测试了多个NLP数据集,包括D
2021-12-05 18:44:20 7KB nlp text-classification tensorflow keras
1
利用PyTorch搭建卷积生成对抗网络生成彩色图像,可参考文章:https://blog.csdn.net/didi_ya/article/details/121670277
2021-12-05 17:07:57 771KB python pytorch 生成器 深度学习
1
基于深度卷积神经网络的人脸识别研究:传统人脸识别方法而言,卷积神经网络模型不需要人工进行大量而又复杂的特征提取算法设计,仅需要设计一个可行的网络模型,再将大量的人脸训练数据集加载到网络模型中,然后进行自动训练,这样就可以得到很好的识别率。把训练好的模型保存下来,那么这个模型就是一个端到端的人脸特征提取器。
2021-11-27 15:04:06 5.48MB 人脸识别 深度卷积 神经网络
1
深度卷积神经网络CNN的Theano实现(lenet),还包括一个单独的卷积层网络
2021-11-17 15:17:05 173KB cnn theano lenet
1
针对传统桥梁裂缝检测算法不能准确提取裂缝的问题,提出了一种复杂背景下基于图像处理的桥梁裂缝检测算法。根据深度卷积生成式对抗网络原理,利用桥梁裂缝图像生成模型,对数据集进行扩增。针对裂缝特征构建基于语义分割的桥梁裂缝图像分割模型,利用桥梁裂缝图像分割模型提取高分辨率裂缝图像中的裂缝。研究结果表明,与现有算法相比,所提算法在复杂道路场景中具有更好的检测效果和更强的泛化能力。
2021-11-16 19:19:22 12.15MB 图像处理 复杂背景 桥梁裂缝 深度卷积
1
剩余使用寿命(RUL)预测在预测和健康管理(PHM)中起着至关重要的作用,以提高可靠性并降低众多机械系统的周期成本。 深度学习(DL)模型,尤其是深度卷积神经网络(DCNN),在RUL预测中正变得越来越流行,从而在最近的研究中取得了最新的成果。 大多数DL模型仅提供目标RUL的点估计,但是非常需要为任何RUL估计具有关联的置信区间。 为了改进现有方法,我们构建了一个概率RUL预测框架,以基于参数和非参数方法来估计目标输出的概率密度。 模型输出是对目标RUL的概率密度的估计,而不仅仅是单点估计。 所提出的方法的主要优点是该方法自然可以提供目标预测的置信区间(不确定性)。 我们通过一个简单的DCNN模型,在公开可用的涡轮发动机退化模拟数据集上验证了我们构建的框架的有效性。 源代码将在https://github.com/ZhaoZhibin/Probabilistic_RUL_Prediction中发布。
2021-11-15 19:46:17 573KB Remaining useful life; Probabilistic
1
笑脸 笑脸检测与使用卷积深层神经网络 。 本示例基于mnist_cnn.py示例,以32x32(而不是28x28)运行。 要编译ZMQVideoInput应用,需要 。 如果要使用OpenCV运行实时捕获,并且正在使用OS X,我建议通过使用Python,并通过以下方式安装OpenCV: conda install -c https://conda.anaconda.org/menpo opencv3
2021-11-10 12:23:59 69KB JupyterNotebook
1
针对传统使用脉间参数难以识别低信噪比条件下的复杂体制雷达信号问题,提出了一种利用深度学习模型辅助训练并对雷达辐射源进行识别的方法。首先利用时频分析的方法产生雷达信号的时频图像作为训练集1。接着利用深度卷积生成对抗网络的样本学习能力在训练集1的基础上二次生成时频图像作为训练集2,训练集2相对于1拥有着去噪和数据增强的效果。最后利用训练集2辅助视觉几何组在训练集1上的训练进行雷达辐射源识别。对5种常见的雷达信号进行了仿真实验,实验结果验证了该方法的有效性。
1
KERAS-DCGAN 具有(awesome) 库的实现,用于通过深度学习生成人工图像。 这将在真实图像上训练两个对抗性深度学习模型,以产生看起来真实的人工图像。 生成器模型尝试生成看起来真实的图像,并从鉴别器中获得高分。 鉴别器模型试图区分生成器的真实图像和人工图像。 这假设theano排序。 您仍然可以通过在〜/ .keras / keras.json中设置“ image_dim_ordering”:“ th”与tensorflow一起使用(尽管这样做会更慢)。 用法 训练: python dcgan.py --mode train --batch_size <batch_si
2021-10-20 13:54:57 838KB deep-learning keras gan dcgan
1
利用TensorFlow实现的深度卷积神经网络项目
2021-10-15 13:37:30 32.46MB Python开发-机器学习
1