剩余使用寿命(RUL)预测在预测和健康管理(PHM)中起着至关重要的作用,以提高可靠性并降低众多机械系统的周期成本。 深度学习(DL)模型,尤其是深度卷积神经网络(DCNN),在RUL预测中正变得越来越流行,从而在最近的研究中取得了最新的成果。 大多数DL模型仅提供目标RUL的点估计,但是非常需要为任何RUL估计具有关联的置信区间。 为了改进现有方法,我们构建了一个概率RUL预测框架,以基于参数和非参数方法来估计目标输出的概率密度。 模型输出是对目标RUL的概率密度的估计,而不仅仅是单点估计。 所提出的方法的主要优点是该方法自然可以提供目标预测的置信区间(不确定性)。 我们通过一个简单的DCNN模型,在公开可用的涡轮发动机退化模拟数据集上验证了我们构建的框架的有效性。 源代码将在https://github.com/ZhaoZhibin/Probabilistic_RUL_Prediction中发布。
1