我们介绍了带变分推理的贝叶斯卷积神经网络,这是卷积神经网络(CNN)的一种变体,其中权重的难处理的后验概率分布是由Backprop的Bayes推断的。 我们证明我们提出的变分推断方法是如何实现的性能相当于频率论推理在几个数据集(MNIST,CIFAR10,CIFAR100),如所描述的相同结构。 贝叶斯vs频频方法中的过滤器权重分布 整个CNN的全贝叶斯视角 图层类型 该存储库包含两种类型的贝叶斯lauer实现: BBB(Backprop的Bayes): 基于。 该层分别对所有权重进行采样,然后将其与输入组合以从激活中计算出一个样本。 BBB_LRT(使用本地重新参数化技巧的Backprop进行Bayes操作): 这一层与本地重新参数伎俩结合贝叶斯通过Backprop。 这个技巧使得可以直接从激活中的分布中采样。 制作自定义贝叶斯网络? 要创建自定义贝叶斯网络,请继承layers.m
2021-12-01 15:13:56 46.78MB python pytorch bayesian-network image-recognition
1
ZhuSuan 一个基于Tensorflow的贝叶斯深度学习库ZhuSuan
2021-12-01 15:12:49 589KB Python开发-机器学习
1
Tensorflow中的贝叶斯生成对抗网络
2021-12-01 15:12:18 956KB Python开发-机器学习
1
Bayes GMM:贝叶斯高斯混合模型 概述 有限贝叶斯高斯混合模型 (FBGMM) 和无限高斯混合模型 (IGMM) 都是使用折叠吉布斯采样实现的。 示例和测试代码 运行make test来运行单元测试。 运行make test_coverage以检查测试覆盖率。 查看 examples/ 目录中的示例。 依赖关系 NumPy 和 SciPy: ://www.numpy.org/ 鼻子: : 参考资料和注释 如果您使用此代码,请引用: H. Kamper、A. Jansen、S. King 和 S. Goldwater,“使用固定维度声学嵌入对语音段进行无监督词法聚类”,IEEE 口语技术研讨会 (SLT) 会议录,2014 年。 在代码中,引用了以下内容: KP Murphy,“高斯分布的共轭贝叶斯分析”,2007 年,[在线]。 可用: : KP Murphy,
2021-11-30 13:26:09 56KB Python
1
机器学习 深度学习 pytorch tensorflow 贝叶斯 神经网络 算法
2021-11-30 13:01:26 5.29MB 机器学习 深度学习 tensorflow pytorch
概率流 ProbFlow是一个Python软件包,用于使用或构建概率贝叶斯模型,对这些模型执行随机变异推理,并评估模型的推理。 它提供了用于构建贝叶斯神经网络的高级模块,以及用于构建定制贝叶斯模型的低级参数和分布。 这项工作仍在进行中。 Git存储库: : 文档: : 错误报告: : 入门 ProbFlow使您可以快速轻松地构建,拟合和评估在和或之上运行的自定义贝叶斯模型(或模型!)。 使用ProbFlow,贝叶斯模型的核心构建块是参数和概率分布(当然还有输入数据)。 参数定义自变量(特征)如何预测因变量(目标)的概率分布。 例如,简单的贝叶斯线性回归 可以通过创建ProbFlow模型来构建。 这只是一个继承pf.Model (或pf.ContinuousModel或pf.CategoricalModel取决于目标类型)的类。 __init__方法设置参数,而__call
2021-11-29 20:56:31 1.21MB python data-science machine-learning statistics
1
针对朴素贝叶斯分类算法中缺失数据填补问题,提出一种基于改进EM(Expectation Maximization)算法的朴素贝叶斯分类算法。该算法首先根据灰色相关度对缺失数据一个估计,估计值作为执行EM算法的初始值,迭代执行E步M步后完成缺失数据的填补,然后用朴素贝叶斯分类算法对样本进行分类。实验结果表明,改进算法具有较高的分类准确度。并将改进的算法应用于高校教师岗位等级的评定。
2021-11-29 16:06:47 612KB 论文研究
1
利用稀疏求解后稀疏解的快内性质,借助贝叶斯网络,快速准确的分解信号 得到在过完备字典上的稀疏解
2021-11-29 11:48:51 15KB 贝叶斯 稀疏系数
1
模式识别采用贝叶斯方法的实验,含matlab源码,数据,报告等,一条龙服务,呵呵,因为自己做实验的时候很痛苦,希望大家参考的时候有所帮助。
2021-11-29 11:28:16 156KB 模式识别 贝叶斯 实验 源码
1
为解决电机在变负载运行条件下滚动轴承振动信号故障的特征提取困难、故障诊断准确率低的问题,提出一种基于变步长粒子群的变分模态分解与贝叶斯网络相结合的滚动轴承故障诊断模型。通过变步长粒子群算法优化的变分模态分解与Hilbert变换,提取故障信息并离散化处理,构建贝叶斯网络故障诊断模型,对滚动轴承故障发生概率推理,并利用完备、不完备数据集以及噪声试验验证该方法的准确性。仿真结果表明,该方法能高效提取特征信息,实现对不确定信息的推理估计,提高滚动轴承故障诊断的准确率,在滚动轴承的故障诊断预测中具有较好的理论与应用前景。
1