probflow:用于使用TensorFlow或PyTorch构建贝叶斯模型的Python包-源码

上传者: 42143092 | 上传时间: 2021-11-29 20:56:31 | 文件大小: 1.21MB | 文件类型: -
概率流 ProbFlow是一个Python软件包,用于使用或构建概率贝叶斯模型,对这些模型执行随机变异推理,并评估模型的推理。 它提供了用于构建贝叶斯神经网络的高级模块,以及用于构建定制贝叶斯模型的低级参数和分布。 这项工作仍在进行中。 Git存储库: : 文档: : 错误报告: : 入门 ProbFlow使您可以快速轻松地构建,拟合和评估在和或之上运行的自定义贝叶斯模型(或模型!)。 使用ProbFlow,贝叶斯模型的核心构建块是参数和概率分布(当然还有输入数据)。 参数定义自变量(特征)如何预测因变量(目标)的概率分布。 例如,简单的贝叶斯线性回归 可以通过创建ProbFlow模型来构建。 这只是一个继承pf.Model (或pf.ContinuousModel或pf.CategoricalModel取决于目标类型)的类。 __init__方法设置参数,而__call

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明