pix2pix:使用生成对抗网络进行图像到图像的翻译
2021-11-25 16:25:10 4.57MB computer-vision deep-learning neural-network matlab
1
Keras梯形网络的半监督学习 这是Keras中Ladder Network的实现。 阶梯网络是半监督学习的模型。 请参阅A Rasmus,H Valpola,M Honkala,M Berglund和T Raiko题为“进行”的论文。 此实现已在我们的论文《的正式代码中。 该代码可以发现和博客文章,可以发现 仅使用100个带标签的示例,该模型即可在MNIST上实现98%的测试准确性。 该代码仅适用于Tensorflow后端。 要求 Python 2.7 + / 3.6 + Tensorflow(1.4.0) 麻木 keras(2.1.4) 请注意,其他版本的tensorflow / keras也应该起作用。 如何使用 加载数据集 from keras . datasets import mnist import keras import random # get the da
2021-11-25 15:46:13 5KB Python
1
linux socket编程,通过实例由浅入深,涵盖client/server设计,部分章节的扩展有助于深入了解TCP/IP协议。
2021-11-25 13:16:49 2.81MB linux socket network programming
1
openstreetmap:OpenStreetMap的接口(加载地图,提取道路连通性,绘制道路网络并找到最短路径)
2021-11-25 06:16:37 16KB matlab openstreetmap plot road-network
1
介绍通过RSNetWorx配置DeviceNet网的步骤,简单高效实用
2021-11-25 00:49:07 342KB logix5000 network
1
作者Alberto Leon-Garcia and Indra Widjaja 英文名Communication Networks: Fundamental Concepts and Key Architectures 第二版2nd Edition
2021-11-24 20:25:20 23.72MB communication network engineering
1
颜世伟 我们的目标是创建一个能够生成现实中不存在的逼真的人类图像的模型。 (将来,我将在GAN及其变体上上传一些用例)。 这些AI背后的技术称为GAN,即“生成对抗网络” 。 与其他类型的神经网络(GAN)相比,GAN采取的学习方法不同。 GAN的算法体系结构使用了两个神经网络,分别称为生成器和鉴别器,它们相互“竞争”以产生所需的结果。 生成器的工作是创建看起来逼真的假图像,而鉴别器的工作是区分真实图像和假图像。 如果两者均能正常工作,则结果是看起来像真实照片的图像。 GAN架构: 数据集可以从以下下载: : 您可以在上关注本文,以逐步了解它,并检查我的以进行实施。 输入图像样本: 输出:
2021-11-24 19:58:06 10.25MB python deep-learning neural-network gan
1
Network Forensics - Tracking Hackers through Cyberspace 英文无水印pdf pdf所有页面使用FoxitReader和PDF-XChangeViewer测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 本资源转载自网络,如有侵权,请联系上传者或csdn删除
2021-11-24 16:05:39 19.64MB Network Forensics Tracking Hackers
1
片上网络基础知识,主要是路由器、算法设计,以及工作原理
2021-11-24 14:52:55 10.96MB noc
1
太阳能预报 该项目是我最后一个学期的硕士学位课程工作的一部分。 此处的主要范围和目标是预测来自亚洲地理位置的年度太阳能发电量(取决于数据),然后减少产生的总软成本。 下文提供的文档和项目报告中详细介绍了这项工作。
2021-11-24 13:14:47 1.42MB aws neural-network random-forest sklearn
1