蛋白质金属结合位点预测 投稿人:田秋,郑子涵,金文浩 生物学意义: 蛋白质及其结构是生命中生物学功能的关键。 通过翻译,核糖体将延长氨基酸序列链,这些氨基酸的物理化学特性及其相互依赖性使一级结构折叠成其复杂的三级结构。 一旦建立了结构,蛋白质结构可能会允许某些离子结合,这可能导致该结构通过构象变化更稳定,或有助于催化。 例如,锌指稳定结构,或血红素基团中离子的必要性,以使血红蛋白转运氧气。 另外,结合位点的序列和结构往往在整个世代中都被保守,并且来自蛋白质数据库(PDB)的大约1/3的蛋白质结构包含金属离子这一事实可能表明它显着干预了蛋白质的行为。 目标 : 我们的兴趣是利用一个突出的神经网络来识别哪些金属与哪个序列结合,以及该金属与哪些氨基酸特异性结合。 我们的目标是将金属分类为准确度为95%的序列。 我们的目标是对哪些氨基酸与F1分数达75%的金属结合进行分类。 概述: [
2023-04-09 12:39:17 316.17MB JupyterNotebook
1
为了能在交通管理中提前采取措施规避可能存在的交通拥挤或堵塞,提出了一种高效可靠的短时交通流预测算法.首先采用BP神经网络与自回归求和滑动平均(ARIMA)两种方法分别建立单项预测子模型,再以BP神经网络作为最优非线性组合模型的逼近器,建立组合预测模型,对单项预测子模型的预测值进行融合,由此得到最终的预测结果.通过MATLAB与SPSS平台对实测交通流量数据进行了仿真分析,结果表明,该种组合预测方法是切实可行的.
2023-04-09 08:17:26 248KB 工程技术 论文
1
针对单项目资源均衡优化在企业实际应用中的不足,提出了多项目资源均衡优化的概念,建立了多项目资源均衡问题模型。在此基础上给出一种遗传算法的求解方法,在算法中有效地利用了网络计划图的拓扑排序,减少了遗传操作过程中非法个体的修复计算量,加快了算法的收敛速度。实例计算表明,多项目资源均衡优化可以有效地实现整个企业资源的均衡配置,遗传算法在求解该问题时具有可行性和高效性。
2023-04-08 17:37:04 242KB 多项目 资源均衡 遗传算法 拓扑排序
1
智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真代码
2023-04-08 14:57:28 228KB matlab
1
时间序列预测 农产品格预测 完整代码+数据
1
沃伦-股票价格预测器 股市预测是试图确定公司股票或在交易所交易的其他金融工具的未来价值的行为。 成功预测股票的未来价格可能会产生可观的利润。 有效市场假说表明,股票价格反映了所有当前可用的信息,因此,任何不基于新发现信息的价格变化本质上都是不可预测的。 其他人则不同意,并且拥有这种观点的人拥有无数的方法和技术,据称它们可以获取未来的价格信息。 在这里,我们利用Facebook的时间序列预测算法Prophet,使用多变量,单步预测策略,实时预测美国公司的股票市场价格。 入门 从github下载或克隆项目 $ git clone https://github.com/nityansuman/wa
2023-04-07 10:52:14 1.28MB python flask neural-networks stock-price-prediction
1
基于matlab的遗传算法及其在稀布阵中的应用 遗传算法 (Genetic Algorithm, GA) 是一种基于自然进化理论的优化算法,可以解决各种复杂的优化问题。在 MATLAB 中,可以使用 ga 函数来实现遗传算法。 在稀布阵 (Sparse Array) 中的应用,可以使用遗传算法来求解稀布阵的构建问题,即在给定的限制条件下,求解稀布阵的布局方式。这类问题可以转化为优化问题,使用遗传算法来求解。
2023-04-06 21:54:23 28KB matlab
1
python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果 python实现ARIMA时间序列预测模型,附有示例数据以及完整流程的结果
2023-04-06 19:49:39 144KB python ARIMA
1
光伏发电量预测机器学习数据集
1
使用Azure预测沃尔玛销售 在此存储库中,我们介绍了Microsoft Azure的Udacity纳米级程序机器学习工程师的Capstone项目。 在最后一个项目中,我们创建了两个模型来解决预测问题:一个模型使用Automated ML ,另一个模型使用HyperDrive调整了超参数。 然后,我们比较两个模型的性能,并将性能最佳的模型部署为Web服务。 特别是,我们选择Light GBM作为我们的自定义模型,以通过HyperDrive优化超参数。 架构图 数据集 总览 该项目中使用的数据集是Kaggle竞争提供的更大数据集的一小部分。 完整的数据集涵盖了美国三个州(加利福尼亚州,德克萨斯州和威斯康星州)的商店,并包括项目级别,部门,产品类别和商店详细信息。 此外,它具有解释性变量,例如价格,促销,星期几和特殊事件(例如超级碗,情人节和东正教复活节),这些变量通常会影响单位销售并可以
2023-04-06 17:34:13 35.67MB JupyterNotebook
1