融合BP神经网络与ARIMA的短时交通流预测 (2011年)

上传者: 38691055 | 上传时间: 2023-04-09 08:17:26 | 文件大小: 248KB | 文件类型: PDF
为了能在交通管理中提前采取措施规避可能存在的交通拥挤或堵塞,提出了一种高效可靠的短时交通流预测算法.首先采用BP神经网络与自回归求和滑动平均(ARIMA)两种方法分别建立单项预测子模型,再以BP神经网络作为最优非线性组合模型的逼近器,建立组合预测模型,对单项预测子模型的预测值进行融合,由此得到最终的预测结果.通过MATLAB与SPSS平台对实测交通流量数据进行了仿真分析,结果表明,该种组合预测方法是切实可行的.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明