基于细胞神经网络CNN的超混沌图像加密算法代码
2022-04-07 19:03:35 352KB cnn 神经网络 深度学习 人工智能
MatConvNet有一个简单的设计理念。它并没有将CNN包裹在复杂的软件层面上,而是直接将MATLAB命令直接展现为计算CNN构建模块的简单函数,如线性卷积和ReLU运算符。这些构建块很容易组合成完整的CNN,并可用于实现复杂的学习算法。尽管提供了几个真实的小型和大型CNN结构和训练例程,但仍可以利用MATLAB原型设计的高效性回到底层构建自己的结构。通常不需要C编码来实现新的结构。因此,MatConvNet是计算机视觉和CNN研究的理想场所
2022-04-06 16:06:49 2.38MB matlab cnn 计算机视觉 学习
1
wwu-ki_brainage 使用卷积神经网络(CNN)进行大脑年龄预测的教程 培训和评估是使用fastai_scans( )完成的,fastai是与3d医学图像配合使用的fastai扩展。 安装 1.)创建一个新的conda环境,安装Python 3.6并激活它 conda create -n wwuki_brainage python=3.6; conda activate wwuki_brainage 2.)在环境中安装pip conda install pip 3.)使用pip在该conda环境中安装软件包(将USER替换为您的用户名,将CONDA_DIR替换为.conda替换为Anaconda,将miniconda替换为miniconda)。 /home/USER/CONDA_DIR/envs/wwuki_brainage/bin/pip install git+git
2022-03-25 14:33:17 19.78MB JupyterNotebook
1
Latte:对流神经网络(CNN)推理引擎 Latte是用C ++编写的卷积神经网络(CNN)推理引擎,并使用AVX对操作进行矢量化。 该引擎可在Windows 10(32位和64位),Linux(内核= 4.12.10,gcc = 7.2.0)和macOS Sierra上运行。 当使用ATLUS构建caffe时,它具有与NVIDIA Caffe相同的精度和相同的推理速度。 该引擎具有自己的网络文件格式(.ahsf文件),因此我们提供了一些python脚本,可将NVIDIA Caffe的文件转换为我们自己的文件。 引擎支持以下层: 输入层。 卷积层。 ReLU。 完全连接的层。 Softmax。 最大池化层。 sigmod。 丹妮 如何使用python脚本: 我们的python脚本是使用Python 2.7.13制作的,需要以下软件包才能正常工作: Pycaffe(在构
1
【图像识别】基于卷积神经网络(CNN)实现垃圾分类Matlab源码
2022-03-14 10:25:11 22KB
1
这是卷积神经网络汇报的知识,包括网络的背景、结构、求解以及应用。是初学者很好的资料,希望对你有用。
2022-03-11 11:46:53 1.15MB 卷积神经网络 CNN
1
上回书说到了对人脸的检测,这回就开始正式进入人脸识别的阶段。 关于人脸识别,目前有很多经典的算法,当我大学时代,我的老师给我推荐的第一个算法是特征脸法,原理是先将图像灰度化,然后将图像每行首尾相接拉成一个列向量,接下来为了降低运算量要用PCA降维, 最后进分类器分类,可以使用KNN、SVM、神经网络等等,甚至可以用最简单的欧氏距离来度量每个列向量之间的相似度。OpenCV中也提供了相应的EigenFaceRecognizer库来实现该算法,除此之外还有FisherFaceRecognizer、LBPHFaceRecognizer以及最近几年兴起的卷积神经网络等。 卷积神经网络(CNN)的前级包
2022-03-05 15:00:50 722KB 人脸识别 卷积 卷积神经网络
1
代码数据完整,包含超限学习机,单层双层神经网络 %% III. 数据归一化 %% % 1. 训练集 [Pn_train,inputps] = mapminmax(p); Pn_test = mapminmax('apply',ptest,inputps); %% % 2. 测试集 [Tn_train,outputps] = mapminmax(t); Tn_test = mapminmax('apply',ttest,outputps); %% IV. ELM创建/训练 [IW,B,LW,TF,TYPE] = elmtrain(Pn_train,Tn_train,19,'sig',0);
2022-03-01 16:52:21 9KB matlab cnn 神经网络 卷积神经网络
1
资料说明:包括数据+代码+文档+代码讲解。 1.项目背景 2.数据获取 3.数据预处理 4.探索性数据分析 5.特征工程 6.构建模型 7.结论与展望
2022-02-15 14:05:19 308.36MB python cnn 人工智能 卷积神经网络
资料说明:包括数据+代码+文档+代码讲解。 1.项目背景 2.数据获取 3.数据预处理 4.探索性数据分析 5.特征工程 6.构建CNN检测模型 7.模型评估 8.结论与展望