将 myloess.m 函数安装到您的路径上,然后浏览 MTT Nonparametric Fitting Demo.m。
2022-01-21 22:59:36 5KB matlab
1
核密度非参数估计的matlab代码交叉验证 在我目前的课程“数据分析和解释”中,我们的课程讲师是图像处理专家,我们已经完成了关于这个主题的几个有趣的作业,并在 MATLAB 中实现了它们。 其中之一是 PDF 估计器,我们在其中比较了各种非参数估计技术,如直方图和核密度估计,并实现了交叉验证程序,这是机器学习的一种应用。 在另一个问题中,我们获得了部分人脑的两个 {\it Magentic Resonance Images} (MRI),这些图像是通过 MRI 机器的不同设置获得的。 在将图像转换为双阵列后,我们被要求以不同的量移动第二张图像,并为每个图像计算第一张图像和第二张图像的移位版本的相关系数 (CC) 和二次互信息 (QMI)。 主要的一点是在几次绘图后意识到 QMI 是一个比 CC 强得多的指标,并分析为什么会这样。 问题陈述: 我们已经通过最大似然在课堂上广泛地看到了参数 PDF 估计。 在许多情况下, 然而,PDF 的家族是未知的。 这种情况下的估计称为非参数密度估计。 我们在课堂上研究了一种这样的技术,即直方图,我们还分析了它的比率 的收敛。 还有另一种流行的非参数密
2022-01-18 03:19:23 102KB 系统开源
1
朴素贝叶斯 数据挖掘的第一个任务。 实施朴素贝叶斯,使用基于熵的离散化预处理数据,并使用 10 倍交叉验证进行验证。
2022-01-08 17:22:34 32.71MB Python
1
spacv :Python中的空间交叉验证 spacv是一个小型Python 3(3.6及更高版本)软件包,用于模型的交叉验证,该模型评估对具有空间依赖性的数据集的泛化性能。 spacv提供了一个类似spacv的熟悉的API,公开了一套适用于基于点的空间预测任务的工具。 有关用法,请参阅笔记本spacv_guide.ipynb 。 依存关系 numpy matplotlib pandas geopandas shapely scikit-learn scipy 安装及使用 要安装,请使用pip: $ pip install spacv 然后使用sklearn构建快速的空间交叉验证
2021-12-22 15:53:20 998KB python data-science machine-learning scikit-learn
1
所有ML算法 它包括所有ML模型。(用于KTM和银行数据) 由所有ML预处理技术组成,如a。 采样技术(欠采样,过采样-ROS和SMOTE)b。 交叉验证(K折,分层K折)c。 主成分分析 具有HYPER参数校正的Boston数据集的套索和岭回归。 该存储库还包含我在编码文件中使用的RAW数据文件
2021-12-11 01:12:55 577KB JupyterNotebook
1
libsvm交叉验证与网格搜索(参数选择)
2021-12-10 10:46:51 47KB libsvm 交叉验证 网格搜索
1
matlab 10折交叉验证知识代码贷款违约模型 基于ML的贷款违约预测模型。 该项目使用了不同的机器学习技术-1. Logistic回归,KNN,分类树,合奏(分类方法),套索(正则化技术),10折交叉验证(ML技术,用于有效地训练我们的分类器,将总体分为训练)和测试样本)。 1.初步要求 为了利用该项目,用户应在其PC上安装Matlab版本R2016b,以便他们可以编译和运行此存储库中包含的代码。 2.入门 为了运行模型,用户需要遵循以下简单步骤: 将信息从名为LCloanbook.rar的文件LCloanbook.rar到本地目录中(确保所有文件都保存在一个位置) 打开并运行名为loan_Default_Model.m的文件 所有测试结果应显示在屏幕的左下角(工作区) 享受! :) 3.仓库组成 loan_Default_Model.m -Matlab代码,包括此模型中使用的不同机器学习技术的定义。 LCloanbook.rar实际的基础贷款数据和变量描述 README.md您当前正在读取的文件 5.执照 MIT许可证涵盖了此存储库中包含的文件。 6.作者 斯韦特洛萨尔·斯托耶夫
2021-12-09 16:51:12 8.87MB 系统开源
1
在构建模型时,调参是极为重要的一个步骤,因为只有选择最佳的参数才能构建一个最优的模型。但是应该如何确定参数的值呢?所以这里记录一下选择参数的方法,以便后期复习以及分享。 (除了贝叶斯优化等方法)其它简单的验证有两种方法: 1、通过经常使用某个模型的经验和高超的数学知识。 2、通过交叉验证的方法,逐个来验证。 很显然我是属于后者所以我需要在这里记录一下 sklearn 的 cross_val_score: 我使用是cross_val_score方法,在sklearn中可以使用这个方法。交叉验证的原理不好表述下面随手画了一个图: (我都没见过这么丑的图)简单说下,比如上面,我们将数据集分为10折
2021-12-05 19:44:50 134KB al ar c
1
程序流程 1.将数据进行预处理。 2.通过一对一方法将45类训练样本((0,1),(0,2),…(1,2)…(2,3))送入交叉验证法,训练算法为smo 3.得出45个模型,测试时在利用投票法判定 数据结构 '''*************************************************************** * @Fun_Name : judgeStruct: * @Function : 存放训练后的分类器参数 * @Parameter : * @Return : * @Creed : Talk is cheap
2021-11-13 12:41:31 80KB IS 交叉 交叉验证
1
给定形成任意数据集的多个样本,该函数为训练和验证创建 K 个集合,以便每个样本仅使用一次用于验证目的,K-1 次用于培训目的。
2021-11-12 21:13:23 2KB matlab
1