移动通信原理课件.rar
2025-10-15 09:12:43 33.11MB
1
在《信息学奥赛课课通(C++)》电子PPT学习课件中,首先介绍了C++编程语言的基础知识点,特别是顺序结构程序设计的关键内容。课件内容主要分为两个部分,分别讲述了C++中的标准输出流和数据类型,这两个部分对于初学者而言是理解C++编程的重要基础。 第一部分详细解释了C++中的输出流,重点介绍了标准输出流cout的使用。cout是C++中用于输出的语句,能够将数据输出到标准输出设备上,如显示器。在使用cout时,需要包含iostream头文件,它提供了输入输出流的标准库。cout语句的格式为“cout << 项目1 << 项目2 << ... << 项目n;”,其中每个项目可以是一个变量、常量、表达式或字符串字面量等。cout语句能够处理不同类型的数据,并能根据不同类型数据的特点进行输出。例如,如果项目是表达式,则输出表达式的值;如果项目加上引号,则输出引号内的内容;当项目是endl时,则表示换行操作。 紧接着,课件通过几个具体的代码示例,引导学习者实际编写程序并观察cout语句的使用效果。例如,课件展示了如何使用cout输出数学表达式的结果、字符串以及实现特定的格式化输出。这些示例帮助学习者理解cout语句的灵活性和强大的输出能力。 第二部分则聚焦于C++中的数据类型。在C++程序中,每一个变量和常量都有一个与之相关联的数据类型。数据类型决定了存储在变量中的数据种类,以及可以对其进行的操作。C++支持多种数据类型,包括基本类型如整型、浮点型、字符型以及由这些基本类型构造的复杂类型如数组、结构体等。变量在使用前必须进行声明,声明时需要指定变量的数据类型以及是否初始化。 课件通过具体代码示例,解释了整型、实型变量的声明与初始化,并演示了整型和实型变量进行混合运算时的结果类型。这个部分强调了数据类型在程序中的重要性,以及理解不同数据类型之间的转换规则对编写正确代码的必要性。 综合来看,《信息学奥赛课课通(C++)》电子PPT学习课件是一套为信息学奥赛学习者准备的基础教程,它从最基本的C++编程概念出发,逐步引导学习者理解并掌握顺序结构程序设计的方法。通过实际的编程示例,课件帮助学习者加深对C++标准输出流和数据类型的了解,为进一步学习C++编程打下坚实的基础。
2025-10-14 15:11:02 1.42MB
1
汽车电工电子技术 “十三五”职业教育国家规划教材 汽车类教学改革规划教材 赠送电子课件、二维码视频、试卷及答案 作者:侯立芬 主编 ISBN:978-7-111-63001-2 所属丛书:高职高专“十三五”规划教材 汽车类教学改革规划教材 前言 项目一汽车直流电路的分析与 测量1 任务一汽车电路组成及特性参数的分析 与测量1 任务二汽车电路基本元器件的识别与 检测8 任务三汽车电路的分析21 小结33 习题33 项目二汽车电源交流电路的分析与 测量37 任务一正弦交流电路分析37 任务二汽车交流发电机的拆解与检测48 任务三汽车整流电路的分析57 小结71 习题72 项目三汽车常用电磁器件的原理分析 与检测75 任务一汽车电喇叭继电器的故障检测75 任务二汽车用变压器的原理分析86 小结93 习题94 项目四汽车执行器与控制电路的 分析96 任务一晶体管的识别与检测96 任务二晶体管在汽车电子电路中的 应用104 任务三汽车充电系统电压监视器电路的 分析116 小结125 习题126 项目五数字电路及其在汽车上的 应用131 任务一汽车散热器水位过低报警电路的 设计131 任务二汽
2025-10-14 10:42:05 29.9MB 课件答案
1
Linux基础教程(清华课件) 是清华大学计算机基础教育课程系列教材,汤荷美 董渊 李莉 程志锐 编著,学习linux的朋友可以参考下。
2025-10-13 20:19:44 3.84MB linux
1
《数字图像处理与分析》是由姚敏教授主讲的一门课程,主要涵盖了数字图像处理的基础理论和实际应用。这门课件集包含了丰富的教学资源,旨在帮助学生深入理解和掌握数字图像处理的关键技术。 数字图像处理是计算机科学的一个重要分支,它涉及到图像的获取、编码、分析、理解和复原等多个方面。在姚敏教授的课件中,可能会涵盖以下知识点: 1. **图像基础知识**:课程会介绍图像的基本概念,包括像素、灰度级、颜色模型(如RGB、CMYK)、空间分辨率和时间分辨率等。 2. **图像数字化**:讲解如何将连续图像转化为离散像素的数字化过程,包括采样和量化。采样决定了图像的空间分辨率,而量化则决定了灰度等级。 3. **图像增强**:探讨如何改善图像的视觉效果,如直方图均衡化、平滑滤波(如高斯滤波)、锐化滤波(如拉普拉斯算子)等技术。 4. **图像复原**:针对图像失真或噪声,学习如何通过去噪、图像恢复等方法提高图像质量。 5. **图像变换**:介绍傅里叶变换、小波变换等在图像处理中的应用,这些变换能揭示图像的频域特性,有助于特征提取和图像压缩。 6. **图像分割**:这是图像分析的关键步骤,包括阈值分割、区域生长、边缘检测(如Canny算子、Sobel算子)等方法,用于将图像划分成有意义的区域。 7. **特征提取**:讨论如何从图像中抽取有用的特征,如角点检测、边缘检测、纹理分析等,这些特征对于识别、分类和跟踪等任务至关重要。 8. **图像编码与压缩**:学习不同的图像压缩标准,如JPEG、JPEG2000、PNG等,理解无损和有损压缩的区别及适用场景。 9. **图像分析与理解**:涉及机器学习和深度学习方法,如卷积神经网络(CNN)、图像分类、目标检测、语义分割等,用于实现高级的图像理解和智能决策。 10. **应用实例**:课程可能还会展示数字图像处理在医学影像、遥感、安防监控、自动驾驶等领域的具体应用。 通过姚敏教授的课件,学生不仅可以系统地学习数字图像处理的理论知识,还能通过学习软件进行实践操作,加深对所学内容的理解,提升实际应用能力。
2025-10-12 20:18:46 5.64MB 数字图像处理
1
人工神经网络(ANN)是计算机科学与人工智能领域中的一个重要分支,它受到生物神经系统的启发,致力于模拟人脑的复杂计算过程。在这个全英文的研究生课程课件中,你将深入学习到人工神经网络的基础概念、架构、训练方法以及在实际问题中的应用。 一、基础概念 人工神经网络是由大量的人工神经元构成的网络结构,每个神经元都有一定的输入和输出,它们通过连接权重相互交互。神经元模型通常基于Sigmoid、ReLU或Tanh等激活函数,用于非线性变换输入信号,使得网络能够处理更复杂的任务。 二、网络架构 神经网络有不同的架构,如前馈神经网络(Feedforward NN)、卷积神经网络(CNN)和循环神经网络(RNN)。前馈神经网络是最基本的形式,数据从输入层单向传递到输出层;CNN适用于图像处理,利用卷积层和池化层提取特征;RNN则适合处理序列数据,如自然语言,具有记忆功能。 三、训练方法 训练神经网络的核心是反向传播算法,通过梯度下降法优化损失函数,调整连接权重,使网络预测结果更接近实际值。此外,还有随机梯度下降(SGD)、动量优化、Adam等优化器,用于加速收敛和防止陷入局部最优。 四、激活函数 激活函数是神经网络的心脏,常见的有Sigmoid、ReLU、Leaky ReLU、ELU等。Sigmoid在两端饱和,可能导致梯度消失;ReLU解决了这个问题,但可能会产生“死亡ReLU”现象;Leaky ReLU和ELU是ReLU的改进版,避免了零梯度问题。 五、损失函数 损失函数衡量模型预测与真实值之间的差距,如均方误差(MSE)、交叉熵损失(Cross-Entropy)等。选择合适的损失函数对模型性能至关重要。 六、正则化与早停 为了防止过拟合,课程会介绍正则化技术,如L1和L2正则化,以及dropout方法。早停策略是在验证集上监控模型性能,当验证集损失不再下降时提前停止训练,防止过度拟合。 七、深度学习框架 课件可能还会涉及常用的深度学习库,如TensorFlow、PyTorch、Keras等,它们提供了便利的API来构建和训练神经网络模型。 八、应用领域 人工神经网络广泛应用在图像识别、自然语言处理、语音识别、推荐系统、自动驾驶等多个领域。通过实际案例,你将了解如何设计并实施神经网络解决方案。 这个全英文的课件对于提升研究生的英文阅读能力和理解深度学习理论十分有益。通过深入学习,你不仅能够掌握人工神经网络的理论知识,还能培养解决实际问题的能力。
2025-10-12 18:45:49 3.74MB 人工神经网络
1
吉林大学计算机网络课件
1
教材制作完整解决方案:提供抓取、剪辑、特效、素材整合、即时录制、后制、屏幕抓取、问卷设计、支持各项格式、发布等强大功能,一次搞定教材制作,不须再购买其他辅助软件!为企业简省大幅人力及成本! 第一时间即时完成教材:强大的“现场简报录制”功能,让正进行中的简报或训练课程直接录制存档,并即时整合影片、声音、素材,随着简报或课程结束,串流影音教材同步完成,节省训练人员宝贵时间! 吃螺丝也不担心重来:可直接从影像抓取装置,录制训练影音资料,若不小心NG,独家强大的“即时分段录制”可以随时暂停,删去不要的段落,再继续录制影片,轻松完成数位化串流影音教材,省去教材制作繁琐烦恼! 迅速累积企业KM内容:零学习的友善操作介面,而且转档速度快,同时整合性强大,支持各项影、音、文件素材、图档、网页及Flash等,可协助企业快速制作不同凡响的精采训练教材,加速累积知识资产,丰富KM内容! 营造有趣学习经验:除可整合各式数位媒体之外,影片内容可加以剪辑及特效后制,让影片呈现更具吸引力!不仅突破国界、距离营造讲师如临现场的效果,更让一板一眼的录影内容更生动活泼,提昇员工训练效率及有趣的学习经验! 双向互动效果评估:独具的问卷互动机制,训练者可突破单向课堂学习模式,学生可以回馈学习成效,对于评估学习效益有莫大助益! 程序内置对朝鲜语,德语,法语,英语,简体中文,繁体中文的支持!^_^
2025-10-11 15:08:15 32.02MB CyberLink
1
测试性分析与评价是针对复杂系统或设备的一种关键能力,主要关注如何在设计阶段就考虑产品的测试性,以便于在后期的使用和维护过程中能够快速、准确地识别和定位问题。这一研究生课程主要涵盖以下几个核心知识点: 1. **测试性基础理论**:这涉及到对系统质量特性的理解,如可靠性、维修性、保障性、经济性和安全性等。测试性是这些特性中的一个关键组成部分,它关乎到产品能否被有效地测试和维护。系统要求和工程背景,包括任务目标、环境和约束,都是设计测试性的基础。 2. **故障与可靠性**:课程深入讲解了可靠性概念,如故障、故障率和平均无故障时间(MTBF)。同时,也介绍了故障模式分析(FMEA/FMECA)和故障树分析(FTA)等方法,用于预测和评估潜在故障。 3. **故障分类**:课程涵盖了不同类型的故障,如二值故障、间歇故障、重复故障、伪随机故障、完美故障和退化故障,这些都是设计测试策略时需要考虑的因素。 4. **维修性和保障性**:维修性是衡量产品易修复的程度,而保障性则关注产品在使用期间的可用性。课程会探讨这两个概念,以及它们对测试性设计的影响。 5. **测试性定义**:课程详细解释了测试性的多种定义,这些定义强调了产品状态的确定性、故障隔离能力和效率,反映了国际和国内标准的不同角度。 6. **测试性技术框架**:该框架展示了测试性设计和技术实现的全过程,包括需求确定、设计分析、试验评估和持续改进。它涵盖了固有测试性、机内测试、外部自动测试、人工测试以及故障预测和健康管理等技术手段。 7. **测试性设计目标**:课程明确了三个主要的设计目标:性能监测,即实时监控产品性能;故障检测,发现产品中的故障;故障隔离,定位故障到可更换的组件,便于维修。 通过这些知识点的学习,学生将掌握如何在系统设计阶段融入测试性原则,从而提高系统的可维护性和可靠性。考试形式包括开卷笔试、调研报告和上机试验,考核学生的理论理解和实践应用能力。在撰写调研报告时,要求内容充实,表达清晰,并遵守学术诚信。通过这门课程,学生不仅能掌握测试性分析与评价的专业知识,还能提升其在实际工程问题中的解决能力。
2025-10-11 15:01:07 1.4MB 研究生课程
1
国家中小学智慧教育平台(课件、课本、视频 )下载器
2025-10-11 12:21:34 15.58MB
1