Lstm进行时间序列预测,预测股票数据,按日的数据
2021-11-15 21:49:44 938KB purebkb 股票预测 LSTM LSTM预测
完整代码,可直接运行
2021-11-15 17:02:26 4.74MB
股票评估工具 此回购包含一组工具,投资者可以使用这些工具来更好地了解他/她感兴趣的股票。它不建议买卖股票,而是有助于形成对股票的有根据的猜测。潜在的未来股价走势,并因此对要分析的股票做出买/卖/持有决定。 这里包括的工具不是唯一可以使用的工具。 之所以将它们包括在内,是因为我相信没有任何一种工具或模型可以充分理解导致股价波动的所有因素。 此仓库中包含的工具集可分为: 工具-EMA信号,布林带。 -通过YahoofFinancials和YFinance API使用财务数据。 -ARIMA随机森林。 -随机森林。 模型-LSTM。 模型-蒙特卡洛模拟。 -NLP情感分析。 模型-基于Markowitz的Efficient Frontier和CVaR。 我相信,通过将上述分析工具一起使用,就可以对未来的股价做出正确的预测。 如何使用储存库 没有预定义的方式来使用存储库中包
1
【预测模型】基于贝叶斯优化的LSTM模型实现数据预测matlab源码.zip
2021-11-13 16:40:22 1.5MB 简介
1
nlp_ner 使用Bi-LSTM和crf来进行人名识别,数据集人民日报98年1月标注数据集,训练:验证:测试为3:1:1 数据说明 原数据文件是/data/rmrb199801.txt data_process.py对文件进行了大量的处理 结果 acc:0.99 f1:0.9
2021-11-13 10:03:59 43.54MB Python
1
参考网上写的、使用tensorflow的lstm实现mnist手写数字识别代码,
2021-11-12 21:32:41 2KB lstm mnist 手写数字识别
1
时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征。这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺序的,同样大小的值改变顺序后输入模型产生的结果是不同的。 举个栗子:根据过去两年某股票的每天的股价数据推测之后一周的股价变化;根据过去2年某店铺每周想消费人数预测下周来店消费的人数等等 RNN 和 LSTM 模型 时间序列模型最常用最强大的的工具就是递归神经网络(recurrent neural network, RNN)。相比与普通神经网络的各计算结果之间相互独立的特点,RNN的每一次隐含层的计
2021-11-11 21:43:51 297KB input keras lstm
1
基于LSTM递归神经网络的番茄目标产量时间序列预测.pdf
RNN-Classification, 在 TensorFlow r1.0 上,基于 rnn/lstm对文本进行分类, 基于的递归最后,本文基于 rnn/lstm模型构建了一个文本分类器,并基于 TensorFlow r1.0. 模型进行这个项目目前支持基本的递归。GRU 。LSTM和 bn LSTM模型。 基于字符嵌入的项目是基于字符的,所以不
2021-11-11 11:49:05 24.86MB 开源
1
基于LSTM神经网络的股价短期预测模型,成烯,钟波,股价预测是时间序列预测领域最具有挑战性的问题,准确预测股价能够帮助投资者降低风险,提高收益。本文应用LSTM神经网络对股价指��
2021-11-10 23:29:33 290KB 统计学
1